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Abstract

Generalization is at the core of evaluation, we estimate the
performance of a model on data we have never seen but ex-
pect to encounter later on. Our current evaluation procedures
assume that the data already seen is a random sample of the
domain from which all future data will be drawn. Unfortu-
nately, in practical situations this is rarely the case. Changes
in the underlying probabilities will occur and we must eval-
uate how robust our models to such differences. This paper
takes the position that models should be robust in two senses.
Firstly, that any small changes in the joint probabilities should
not cause large changes in performance. Secondly, that when
the dependencies between attributes and the class are constant
and only the marginals change, simple adjustments should
be sufficient to restore a model’s performance. This paper
is intended to generate debate on how measures of robust-
ness might become part of our normal evaluation procedures.
Certainly some clear demonstrations of robustness would im-
prove our confidence in our models’ practical merits.

Introduction

Generalization is at the heart of machine learning research.
A core part of evaluation is estimating performance on un-
seen data. Typically some portion of the data set is held back
solely for the purpose of estimating this. Our current evalu-
ation procedures, and the associated theoretical guarantees,
assume that the held back data is a random sample of the
problem domain. Unfortunately, in practical situations this
is rarely the case. Differences in the joint distribution occur
over the time from when our algorithm is developed to when
it is deployed. Differences occur over the lifetime of the al-
gorithm. Differences occur when the algorithm is deployed
in different locations, albeit in the same problem domain.
Differences even occur when the domain is static. The peo-
ple who collected the data we are using for evaluation had
various motives none of which are likely to produce random
samples. Nevertheless, the data do contain information that
is valuable as a source of learning. We can neither afford to
throw away the data nor go on assuming that the sample is
random. Instead, we must develop new ways of evaluating
generalization that account for various degrees of deviation
from this assumption.
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This paper presents some initial steps of this author’s con-
tinuing research into why these differences occur, how ro-
bustness measures might be included in our evaluation pro-
cedures and how classifiers could be made more robust.
Many of the differences that will occur depend on the un-
derlying structure of the problem. There is potential here to
produce a circularity as the role of learning is to discover
this structure. To avoid this, I introduce a few very gen-
eral problem structures which the users should be able to
confidently identify in their problem domains. These struc-
tures are much more abstract than would be produced by
our learning algorithms. Yet, they considerably constrain
the type of changes that are likely to occur between the eval-
uation stage and when the model is used in practice. The
structures presented in this paper by no means exhaust all the
possible differences that might be encountered in practice. I
would argue, however, it is necessary to begin the process of
cataloging the sort of differences that may occur. This will
lead to greater confidence in our evaluation procedures and
the practical value of our machine learning algorithms.

General Problem Structures

To determine what changes may occur when deploying a
model, we need some idea of the causal structure of the
problem. It is not the intent, here, to enter the philosophi-
cal debate about the nature of causality, but I will make use
of two concepts already introduced to the machine learning
community by Pearl 1996. Firstly, I use the idea of coun-
terfactuals: what could have happened but didn’t. Secondly,
I use the idea of causal direction: what proceeds what in
causal terms. Counterfactuals indicate what might have been
different, here I take this to mean what may be different in
the future. The causal direction, the one that defines the re-
lationship between the class and the attributes, will be used
to identify the counterfactuals.

To make the point clearer I’ll use the medical example of
a heart attack (acute myocardial infarction for those more
medically inclined). When talking about medical diagno-
sis, we typically think in terms of the symptoms of a dis-
ease. For a heart attack these include chest pain, shortness
of breath, nausea, vomiting, palpitations, sweating, and anx-
iety. In machine learning, heart attack would be the class and
the symptoms the attributes. Even if we are not clear about
the exact relationship between the attributes and the class,



or among the attributes themselves, there is presumably lit-
tle doubt on the causal relationship between the disease and
the symptoms. The direction is clearly from the disease to
the symptoms, the class to the attributes, as shown in figure
1.
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Figure 1: Disease to Symptoms

Suppose we have a patient who is having a heart attack,
what are the counterfactuals? Well certainly the heart attack
might not have occurred. But given that it did occur, the
symptoms are a necessary consequence. This is not a matter
of if the symptoms are deterministically or probabilistically
related to the disease. What matters is the causal direction.
Probabilistically, the marginals associated with the symp-
toms can’t change unless the probability of having a heart
attack changes. This is, of course, assuming that dependence
structure remains the same. In medical problems, we would
expect the relationship between the disease and the symp-
toms to remain constant over time. What is not guaranteed
to remain constant is the frequency of heart attacks in the
population. This is one example of a changing class distri-
bution which has been explored by researchers for many dif-
ferent applications. We have ways of evaluating classifiers
under these conditions, including ROC (Provost & Fawcett
2001) and cost curves (Drummond & Holte 2006).

We know that there are risk factors for heart attacks in-
cluding age, smoking and obesity. If we include these fac-
tors as attributes, their relationship to the disease will be dif-
ferent from that of the symptoms. The causal direction is
from the risk factors to the class to the symptoms, as shown
in figure 2.

The risk factors, as well as the symptoms, might form part
of the model used to diagnose if someone is having a heart
attack or not. A young, trim, non smoker is less likely to
be having a heart attack even if he or she is showing some
of the symptoms. But for evaluation, we cannot treat these
factors as other attributes, they may vary over time. Nowa-
days, smoking is decreasing yet the population is aging and
obesity is rising. How confident could we be in the future ef-
ficacy of any predictive model learned using historical data?
We should evaluate how robust our models are to changes
in these risk factors. We could use bootstrapping (Efron &
Tibshirani 1993) controlling the marginals that are expected
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Figure 2: Including Risk Factors
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to vary, in the same way that changes in class distribution
have been handled (Drummond & Holte 2006). This would
give us confidence bounds over any performance measure
we might use. We would not only have bounds for sampling
variation but also for changes in risk factors. Narrow bounds
for both cases would give use high confidence of the robust-
ness of our models and thus their usefulness in the future.

If we are unsure of the causal relationships, we could
evaluate our models varying all the attributes. We could
bootstrap over all the marginals, assuming there was suf-
ficient variability in the evaluation data set. This may be
worth doing for small amounts of variation to be sure that
resulting change in performance is also small. But I would
argue, it should not be used for testing the robustness to
larger changes. One concern is that most existing classi-
fiers would do rather badly. Discriminative classifiers typi-
cally have no means of adjustment should all the marginals
change. Although simple adjustments may be possible if
only some marginals, perhaps just the class distribution
(Weiss & Provost 2003), were subject to change.

This would seem to be a strong argument for using gener-
ative classifiers, they would surely fare much better. But
only if they included the complete dependence structure
would they be immune to changes in any marginal. One
way for representing this structure, very popular in finance,
is the copula (Nelsen 1999). The copula is a cumulative dis-
tribution function defined on the unit hypercube. It captures
the dependence relationships, perhaps somewhat simplified,
between attributes without specifying any of the marginal
distributions. So, some models might be robust to changes
in all the marginals but most would not. Subjecting them to
tests that are more rigorous than needed would be counter-
productive.

Another concern is that learning the full dependence
structure has many inherent difficulties not the least of which
is the small size of many data sets. We also know that in
some cases discriminative classifiers have empirically bet-
ter performance than generative ones (Rubinstein & Hastie
1997; Vapnik 1998). There is also some theory suggesting
why this holds true, at least asymptotically (Vapnik 1998).
It is quite possible then that learning more than necessary



has a generally downward effect on performance. It would
therefore seem reasonable to identify, if at all possible, the
attributes causally prior to the class. Then evaluate robust-
ness for major changes only in these attributes.

The aim of the research discussed in this paper is to de-
lineate the ways in which the joint probability distribution
could change and yet our classifiers would still be useful. If
the changes are too large, we would not expect the model to
be of any use. So far [ have assumed it is only the marginals
of the distribution that might differ. In many domains, such
as medical diagnosis, this would seem a reasonable assump-
tion. In other domains, this may not be the case. It still
might be possible to define limited, yet commonly occur-
ring, ways the dependence structure might vary and yet our
classifiers might still be robust. One idea explored by a num-
ber of researchers is concept drift (Widmer & Kubat 1996),
which requires that the speed and extent of the drift is lim-
ited. Another relevant avenue of research is context sensitiv-
ity (Turney 1996), where the importance of attributes or their
scaling is situation dependent. With copula, the assumption
is that a simple dependence relationship exists between at-
tributes. One that is commonly used, the Gaussian copula,
assumes all dependencies are captured by a correlation ma-
trix. We might allow for limited changes in this relationship.
For example, we expect changes in the strength of depen-
dence while any independence relationships are maintained.

Whether or not there are other simple constraints on the
changes in the joint probability distribution, where robust-
ness might be worth evaluating, remains the subject of fu-
ture research. I do feel, however, that the effect of small
changes in the underlying dependence structure should be
evaluated. Again these should not produce large changes in
performance.

Conclusion

In this paper, I have argued that models should be robust at
least to changes in some marginal probabilities. I believe
it is reasonable to have a clear idea of the abstract causal
structure in a problem domain; learning would discover the
details of this structure. If we can identify those marginals
subject to change then we can test the robustness of clas-
sifiers to such changes. This would certainly improve our
confidence in the long term usefulness of our models.
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