
Composing Functions to Speed up ReinforcementLearning in a Changing WorldChris DrummondDepartment of Computer Science, University of OttawaOttawa, Ontario, Canada, K1N 6N5cdrummon@csi.uottawa.caAbstract. This paper presents a system that transfers the results ofprior learning to speed up reinforcement learning in a changing world.Often, even when the change to the world is relatively small an extensiverelearning e�ort is required. The new system exploits strong featuresin the multi-dimensional function produced by reinforcement learning.The features generate a partitioning of the state space. The partitionis represented as a graph. This is used to index and compose functionsstored in a case base to form a close approximation to the solution of thenew task. The experimental results investigate one important exampleof a changing world, a new goal position. In this situation, there is closeto a two orders of magnitude increase in learning rate over using a basicreinforcement learning algorithm.1 IntroductionThe aim of this work is to maximise the transfer of learning from previous tasksto the current one. At the base of the system is a standard reinforcement learningalgorithm. One advantage of reinforcement learning is that it learns even whenthe information available is very limited. It requires only knowledge of its presentstate and infrequent numerical rewards to learn the actions necessary to bringa system to some desired goal state. As often occurs in achieving this level ofgenerality, the learning rate is slow. It is important therefore to exploit the resultsof prior learning to speed up the process while maintaining the robustness of thegeneral learning method.This work uses syntactic methods of composition much like in symbolic plan-ning, but the novelty arises in that the components of this composition arecontinuous functions. The functions needed for composition are either learnt in-dividually or extracted from more complex functions associated with compoundtasks. The e�cacy of this approach is due to the composition occurring at a suf-�ciently abstract level where much of the uncertainty has been removed. Eachfunction acts much like a funnel operator [1], so although individual actions maybe highly uncertain the overall result is largely predictable.The central intuition of this work is that there are strong features in themulti-dimensional function learnt using reinforcement learning. The importantaspect of these features, for the purposes of this paper, is that they largely



dictate the shape of this function. A popular technique in object recognition,the snake [12], is used to locate and characterise these features. The snake isthen converted into a discrete graph. The graph and its constituent subgraphsact as an index into a case base of previously learnt functions. When a newtask is being learnt planning occurs at the graphical level. The relevant casesare determined by graph matching and then a transform is applied to adapt theretrieved function to the new task. The new function is used to initialise thelower level learning process, which may further re�ne the function to better �tthe new task. Thus the planning stage need not be exact. It need only be accurateenough to produce a signi�cant speed-up in the learning process, averaged overmany learning episodes.The rest of the paper begins with section 2 giving a very high level discussionof the approach taken. The intent is to appeal to the intuitions of the reader,with section 3 giving a more in depth discussion of the techniques used. Section4 presents experiments demonstrating a substantial increase in learning rate.Subsequent sections deal with limitations, future work and related research.2 An OverviewThe experimental testbed used is this paper is a simulated robot environmentof di�erent con�gurations of interconnected rooms. The robot must learn tonavigate e�ciently through these rooms to reach a speci�ed goal from any startlocation. Figure 1 shows one example with the goal in the top right corner. Therobot's actions are small steps in any of eight directions. Here the location, orstate, is simply the robot's x and y coordinates. The thin lines of �gure 1 arethe walls of the rooms, the thick lines the boundary of the state space.
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Fig. 1. Robot Navigating Through a Series of Rooms



If each action is independent, the task becomes one of learning the bestaction in any state. The best overall action would be one that takes the robotimmediately to the goal. But this is only possible in states close to the goal.Suppose the robot is in a particular state and that the number of steps to goalfrom each of its neighbouring states is known, indicated by the numbers in �gure1. Then a one step look ahead procedure would try each step and select the onethat reaches the neighbouring state with the shortest distance to goal. In �gure 1the robot would move to the state 10 steps from goal. If this process is repeatedthe robot will take the shortest path to goal. In practice we must, of course,learn such values. This can be done using some type of reinforcement learning[18, 14] which progressively improves estimates of the distance to goal fromeach state until they converge to the correct values. This paper is not primarilyconcerned with learning in a radically new environment, the system incorporatesa reinforcement learning algorithm for that purpose. This paper rather addressesthe transfer of learning between closely related tasks. The principal example forthe purposes of this discussion and the experiments of section 4 is the transferthat occurs when the goal position is changed.
O

I Fig. 2. The Reinforcement Learning FunctionThe function shown in �gure 2 is the result of reinforcement learning on theproblem of �gure 1. But instead of it representing the actual distance to goal, itrepresents essentially an exponential decay with distance to goal. The reasons forthis will be made clear in section 3.1. The shaded areas represent discontinuitiesin the learnt function. Comparing this to the environment shown in �gure 1 it isapparent that these correspond to the walls of the various rooms. These are thestrong features discussed in this paper. They exist because of the extra distancefor the robot to travel around the wall to the inside of the room on the path tothe goal. These features are visually readily apparent to a human, so it seemsintuitive to use vision processing techniques to locate them.



An edge detection technique called a snake is used to locate these features.The snake produces a rectangle locating the boundary of each room. The door-ways to the room occur where the di�erential of the function is at a local mini-mum. The direction of the di�erential with respect to that of the discontinuitydetermines if it is an entrance or an exit. From this information a plane graph,with an (x; y) coordinate for each node, is constructed. Figure 2 shows one suchexample, for the room at the top left corner of the state space. Nodes corre-sponding to the doorways are labelled \I" or \O" for in and out respectively.
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Fig. 3. Graphical RepresentationThe left hand side of �gure 3 shows plane graphs for all the rooms. Thenode representing the goal is labelled \G". A directed edge is added from \In"to \Out" or \In" to \G" as appropriate. Associated with this edge is a numberrepresenting the distance between the nodes. This is determined from the value ofthe function at the points of the doorways. Each individual graph is then mergedwith its neighbour to produce a graph for the whole problem, the right hand sideof �gure 3. The doorway nodes have been relabelled to \D". The composite graphrepresents the whole function. Each individual subgraph represents a particularpart of the function. This information is stored in a case base. Each subgraph isan index, the corresponding part of the function is the case.Now suppose, the goal is moved from the top right corner to the top left.Reinforcement learning in its most basic form would be required to learn thenew function from scratch. In this work if the goal is moved, once the new goalposition is known the node representing the goal can be relocated. The newgoal position is shown as the dashed circle in �gure 3. The edges connectingthe doorways and the goal are changed to account for the new goal position.



The dashed lines representing the new edges replace the solid lines in the samesubgraph. To produce a new function, the idea is to regress backwards from thegoal along these edges. For each edge, the small subgraph containing the edge isextracted. The extracted subgraph is used to index the case base of functions.The retrieved function is transformed and added to the appropriate region ofthe state space to form the new function.
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ROTATE Fig. 4. Function CompositionIn this example some of the existing subgraphs match the new con�guration.The two that are changed are the one originally containing the goal and the onenow containing the goal. It may be possible to exchange these two, using anappropriate transform. But if there are many more cases in the case base othergraphs may better match the new task. In this example, the best match for thesubgraph containing the new goal is the subgraph for the goal in the originalproblem. To �t this to the new task the plane graph is rotated and stretchedslightly in the new x direction by changing the coordinates of its nodes, see�gure 4. Then this same transformation is applied to the function. A case ob-tained when solving another task is used for the room containing the originalgoal. The other three rooms use the functions from the original problem, thoughtheir heights must be changed. This is simply a multiplication by a value repre-senting the distance to goal from the \O" doorway. Because the matching of thesubgraphs allows some error and asymmetric scaling may be used the resultingfunction may not be exact. But as the experiments will demonstrate, the func-tion is often very close and further reinforcement learning will quickly correctany error.



3 Details of The Techniques UsedThis section will discuss in more detail the techniques used. These include: rein-forcement learning to produce the initial function, snakes to extract the featuresproducing the graph and the transformation and composition of the subgraphsand their corresponding functions to �t the new task.3.1 Reinforcement LearningReinforcement learning works by progressively improving estimates of the dis-tance to goal from each state. This estimate is updated by the best local action,one moving the robot to the new state with the smallest estimated distance.Early in the learning process only states close to the goal are likely to have ac-curate estimates of true distance. Each time an action is taken, the estimate ofthe new state is used to update the estimate of the old state. Eventually thisprocess will propagate back accurate estimates from the goal to all other states.Rather than directly recording the distance to goal, this paper uses the moreusual representation of reinforcement learning, the expected discounted rewardfor each state E[P1t=1 trt]. The inuence of rewards, rt, are reduced progres-sively the farther into the future they occur by using a  less than one. In thiswork, the only reward is for reaching the goal. So the farther the state is from thegoal the smaller the value. This forms a function over the state space, as shownin �gure 2. The use of an expectation here allows the actions to be stochastic,so when the robot takes a step in a particular direction from a particular state,the state reached is not always the same.To do the reinforcement learning this research uses the Q-learning algorithm[18]. This algorithm assumes the world is a discrete Markov process thus bothstates and actions actions are discrete. For each action a in each state s, Q-learning maintains a rolling average of the immediate reward r plus the maximumvalue of any action a0 in the next state s0, see equation 1. The function discussedin previous paragraphs and shown in the �gures represents this maximumvalue.The action selected in each state is usually the one with the highest score. Butto encourage exploration of the state space this paper uses an � greedy policy[13] which chooses a random action a fraction � of the time.Qt+1s;a = (1� �)Qts;a + �(r + maxa0Qts0;a0) (1)Watkins and Dayan [18] proved that this will converge to the optimal valuewith certain constraints on the reward and the learning rate �. The optimalsolution is to take the action with the greatest value in any state. Thus in thisrobot problem, a greedy algorithm will take the shortest path to the goal oncelearning is complete. The extension to continuous spaces can be done using func-tion approximation. The simplest method, and the one used here, is to dividethe state dimensions into intervals. Each resulting cell then represents the aver-age Q-value of taking a particular action from somewhere within a region of thestate space. In many applications this method is successful but there exists nogeneral proof of its convergence.



3.2 Feature ExtractionFeature extraction uses a vision processing technique called a snake. The righthand side plot of �gure 5 is the magnitude of the gradient vector of the functionin �gure 2. This is the absolute value of the largest gradient in any direction,it forms hills corresponding to the steep slopes of the function. To locate thefeatures a curve is found that lies along the ridge of the hills. On the left handside of �gure 5 the dashed lines are contours for one of the rooms as indicated, thesystem adds a gradient around the rooms to represent the state space boundary.
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DoorwayFig. 5. Fitting the SnakeThe dark lines in �gure 5 are the snake. Starting from the initial position,the smallest rectangle, the snake is expanded by a ballooning force [2] until itreaches the base of the hills. Now to simplify the exposition, we can imaginethat the snake consists of a number of individual hill climbers spread out alongthe line representing the snake, indicated by the small circles. But instead ofbeing allowed to climb independently their movement relative to each other isconstrained, in this instance to maintain a rectangular shape. This preventsindividual points getting trapped in local maxima and collecting at the hills'apices. When the snake reaches the top of the ridge, the largest rectangle in�gure 5, it will tend to oscillate around an equilibrium position. By limiting thestep size the process can be brought into a stationary state. A more detailedmathematical treatment of this approach is given in [2]. Looking at the gradientplot, the doorways are regions with a small di�erential between the ridges. Theposition of the doorways can be determined from the magnitude of the gradientalong the snake. Taking the corner points of the rectangle and the position ofthe doorways, a plane graph is produced. The rectangle delimits a region of thestate space, and therefore of the learnt function. This becomes a case in the casebase, the corresponding graph its index.



3.3 Transformation and CompositionThis section discusses the transformation and composition of individual sub-graphs and their corresponding functions to form a solution to the new task. Thesystem �nds all subgraphs in the case base isomorphic to a subgraph extractedusing the snake and all possible isomorphic mappings between their nodes, usinga labelling algorithm [6]. Associated with each node of a subgraph is an (x; y)coordinate. A similarity transform is applied to each of the isomorphic subgraphsto minimise the squared distance between the coordinates of the mapped nodes.The transform permits translation, rotation and independent scaling in each di-mension. The subgraph selected is a compromise between the best �t and theleast scaling, particularly asymmetric scaling. The corresponding function fromthe case base is then modi�ed using the same transform.
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d2Fig. 6. Using Dijkstra's AlgorithmFunction composition uses Dijkstra's algorithm [3] to traverse the edges be-tween doorway nodes. Figure 6 shows the composite graph for the new task.To begin the process, the subgraph which contains the goal is selected and thebest matching isomorphic subgraph is found. The edge lengths in the compositegraph are then updated using the scaled length of the corresponding edge inthe matching subgraph, d1 and d2 in �gure 6. As d2 is less than d1, the nextsubgraph selected, Gr2, is the one sharing the doorway node with the edge oflength d2. The best matching isomorphic subgraph is found and the edge lengthupdated, d3. The shortest path is again determined, as d1 is less than d2 +d3 subgraph Gr3 is selected. The process is repeated until all subgraphs havebeen updated. At each stage when a subgraph is matched, the correspondingtransformed function is added to the new function in the appropriate region.Here there is one path to the goal from each room. If a doorway was addedto the lower left corner of room 5, the graph on the left of �gure 7 would result.There are now two possible paths, lengths d4 and d5. If the distance across room
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D Fig. 7. Combining Two Functions5, d6, is greater than the absolute di�erence between d4 and d5, the choice ofpath will be determined by a decision boundary in this room. This is producedby taking the maximum of two functions one for each path, see �gure 7. Thisprinciple could be repeated for additional paths to the goal from this room.When a scaling transform is used the height of the retrieved function mustbe adjusted. Imagine that to �t a new room the length of the function must bedoubled in each dimension. The distance between the doorways will thereforedouble. As the function is an exponential in this distance the height must besquared, after normalising the function so that it is one at the out doorway.In general, the height is raised to the power of the scale factor. When scalingis symmetric the result is exact, assuming distance is a linear metric. Withasymmetric scaling it is not. But if the di�erence is relatively small it is a usefulapproximation to use the average of the two scale factors. The height is alsoadjusted when the retrieved function is added to the function for the wholestate space. We need to abut individual functions so that the result is smoothat the doorways. Starting with a normalised function, as it is an exponential thefunction is multiplied by the exponential of accumulated distance to the goal.4 ExperimentsThe experiments investigate the time taken to correct the learnt function whenthe goal is relocated. The basic Q-learning algorithm is used (� = 0:1; � =0:1;  = 0:8; r = 1:0 at the goal) with a discrete function approximator as dis-cussed in section 3.1. There are 9 di�erent room con�gurations, the number ofrooms varying from 3 to 5, and four di�erent goal positions. Each room has 1 or2 doorways and 1 or 2 paths to the goal. The state space is a unit square. A stepis �0:0625 plus a random value between �0:03125 along one or both dimensions,giving the eight possible actions . To initialise the case base, a function is learntfor each of these con�gurations with the goal always in the top right corner.The basic Q-learning algorithm is then rerun on each room con�gurationwith the goal in the top right corner. After 300,000 steps the goal position
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Fig. 8. Learning Curves: Steps to Goalis moved to one of the three remaining corners of the state space. Learningcontinues for a further 300,000 steps. At �xed intervals, learning is stopped andthe average number of steps to reach the goal is recorded. The average is across64 di�erent start positions distributed uniformly throughout the state space.The maximum number of steps for each start location is limited to 2000. Thecurves in �gure 8 are the average for three new goal positions for each of thenine room con�gurations. Zero on the x axis is where the goal is moved.The basic Q-learning algorithm, the top curve of �gure 8, performs poorly.When the goal is moved the existing function pushes the robot towards the oldgoal position. This is particularly apparent when the room con�guration is theone of section 2. If the new goal is at lower left hand corner of the state space,the minimum of the existing function, the learning algorithm has to \atten" itcompletely before a new one can be learnt. Here the limit of 2000 steps to thegoal was exceeded for the majority of start positions even after 300,000 steps.A variant of the basic algorithm reinitialises the function to 0.75 everywhereon detecting the relocation of the goal, it being no longer at the maximum ofthe existing function. This reinitialised Q-learning, the middle curve, performedbetter and all the start locations took under 2000 steps to the goal after 200,000steps. Room con�gurations with a single path to goal, such as the example ofsection 2, still took the most time. After the function is reinitialised the likelihoodof random actions successfully navigating the rooms to the goal is small and thisseriously slows the learning process.The function composition system, the lowest curve, performed by far the best.It �rst detects when the goal is moved, locates its new position and composesthe new function. The number of paths has no impact on learning. It reachedthe same average steps to goal as the reinitialised Q-learning at about 5000 stepsand as the basic Q-learning at about 3000 steps. This is an increase in learningrate of between times 60 and 100.



5 Limitations and Future WorkFuture work will address limitations in the present experimental validation. Amore thorough comparison to other approaches is needed. An alternative strawman such Dyna-Q+ [14], speci�cally designed to deal with changing worlds,would unquestionably reduce the speed-up experimentally obtained. Also, ex-periments using a random positioning of the goal would be more realistic.The system exploits symmetries in the domain. What happens when thesesymmetries only partially hold or do not hold at all remains to be investigated.The system at present only works for rectangular rooms, but the snake is not sorestricted and this work should readily extend to much more general shapes. Inaddition, the system only detects a change in goal position. Other changes suchas the opening and closing of doors are also being investigated.Previous work by this author [4] investigated using the features discussed inthis paper to recognise if a similar task had been solved previously. Functionsstored in a case base were then used to initialise and thus speed up the initiallearning process. These two ideas will combined in future work. When a newtask is being learnt, the system will progressively build up a solution by functioncomposition, as di�erent features become apparent.6 Related WorkThe most strongly related work is that investigating macro actions in reinforce-ment learning. Precup and Sutton [9] propose a possible semantics for macroactions within the framework of normal reinforcement learning. Singh [11] usespolicies learnt to solve low level problems as primitives for reinforcement learn-ing at a higher level. The work presented here gives one way macro actions canbe extracted from the systems interaction with its environment without externalhelp. Thrun's research [16] identi�es macro actions used in multiple tasks. Butunlike the research presented here, no mapping of such actions to new tasks isproposed. Mahadevan and Connell [7] use reinforcement learning in behaviourbased robot control. Although in a much simpler domain, the work presentedhere does not require rewards for individual macro actions. Rather the macroactions are identi�ed and extracted from the solution of a compound task.Previous work that combines instance based or case based learning withreinforcement learning has principally addressed the economical representationof the state space. Peng [8] and Tadepalli [15] use learnt instances combined withlinear regression over a set of neighbouring points. Sheppard and Salzberg [10]also use learnt instances but they are carefully selected by a genetic algorithm.Unlike this other research, in the work presented here the case is not an exampleof the value function during learning. Rather it is a function representing a macroaction and the principle should be complementary to these other approaches.This work is also related to case based planning [5, 17], �rstly through thegeneral connection of reinforcement learning and planning. But it is analogousin other ways. When there is a small change in the world, a composite plan ismodi�ed by using sub-plans, extracted from other composite plans.
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