
Reverse-Engineering Costs:
How much will a Prognostic Algorithm save?

Chris Drummond and Chunsheng Yang
Institute for Information Technology
National Research Council Canada
Ottawa, Ontario, Canada, K1A 0R6

Email: (Chris.Drummond,Chunsheng.Yang)@nrc-cnrc.gc.ca

Abstract—One effective way to evaluate a prognostic algorithm
is to estimate its potential cost savings. Unfortunately, the final
cost is dependent on individual costs, seldom easy to obtain and
changing over time. It is dependent on component failure rates,
also subject to change. This paper shows a way of representing
cost savings over a wide range of costs and failure rates. We show
that, even without complete information, it is possible to “reverse
engineer” the effective range of any algorithm. We introduce a
simple tool to help the algorithm designer do this. We also argue
that even when the information appears complete, it is useful to
explore this range to assess the robustness of the algorithm. We
illustrate the approach with a case study on prognostics applied
to maintenance in the railway industry.

I. INTRODUCTION

Evaluation of prognostic algorithms is an important exer-
cise. It is necessary not only as a means of assessing the
usefulness of a particular algorithm for a particular application
but also to determine progress within the field as a whole.
As the prognostics field expands rapidly, the need for good
evaluation procedures becomes paramount. It is useful to
draw from closely related fields, such as Machine Learning.
Experience, there, has shown that the over reliance on a single
performance measure, such as error rate, is problematical.
This paper discusses a graphical representation which can
cope more effectively, than any single measure, with the
changes that naturally occur within domains such as equipment
maintenance. We do not claim that this approach can account
for all possible variations that should be taken into account.
However, modeling performance in terms of cost savings,
how much a prognostic algorithm improves on the current
approach, is very intuitive and readily understood by end users.

One difficulty, in obtaining a final estimate, is that cost
savings depend on individual costs not always easy to obtain.
This may occur because no-one has all the information readily
at hand. It may be due to people’s reluctance to count the costs
associated with safety issues. In this paper, we explore the
idea of reverse engineering some of these values during the
development process. What we mean by reverse engineering is
determining the range of costs and failure rates over which an
algorithm will be useful. This range may be sizable, perhaps up
to one or two orders of magnitude in cost. So, even without a
good estimate of actual costs, we would have some confidence
that the algorithm will be useful in practice. Presenting a range
of values should also make the end user more comfortable.

Users are reluctant to give single values themselves, with
some justification as sizable cost variances are inherent in the
domain. We do not expect reverse engineering of these values
to occur just once. We view this as part of a continuous dialog
between the algorithm designer and end user.

Even if we do have estimates of costs from the end
user, we should treat them as “best guesses” rather than
exact values. Therefore, establishing a range is still useful.
It it also extremely unlikely that the values are static. Over
time, many things will change. How often a part fails will
change. The maintenance organization and original equipment
manufacturer will address problems extending a part’s life.
Other aspects, such as the conditions to which the equipment
is exposed, will also affect failure rates. How much the part
costs will change. Parts will fluctuate in price, due to improved
manufacturing or other changes outside the maintenance orga-
nization’s control. The cost of repairs will change. The main-
tenance organization will work to streamline its procedures to
reduce repair time and costs, yet labor costs may increase.
The consequence of a part failing will change. Without some
idea of the robustness of a prognostic algorithm to changes, a
single performance value would be of questionable merit.

Here, we introduce a tool to help algorithm designers eval-
uate their performance in comparison with what the end user
is currently doing. We have used this process for algorithms
we are developing ourselves. We apply it to maintenance in
the railway industry to illustrate its advantages.

II. VISUALIZING PERFORMANCE

This section introduces a way of visualizing the expected
cost of different maintenance policies. The approach is a
specialization of a general method for visualizing classifier
performance called cost curves [1], [2]. To introduce this
visualization method, let us begin by imagining that failures
are very rare. This is the lower left hand corner of figure 1.
Suppose we wait for a failure to occur before doing anything.
Let us call this trivial policy “Replace on Failure”. This is
a good policy when failures are rare. However, as failures
become more common, the solid arrow at the bottom, the
overall cost will increase, the solid arrow on the left. The
relationship between the two is indicated by the dashed arrow.

The cost is directly proportional to the probability of failure,
the expected cost is just the cost of a failure times its

Cost

Replace on Failure

More Failures

Greater

Fig. 1. Increasing Costs

probability. If the failure rate is constant but the cost of failure
increases we would have the same result. So, changes in the
probability of failure and the cost of failure have similar effect.
If we normalize the product of probability and cost so that it
ranges from zero to one, we end up with the x-axis of figure
2. As we have normalized the x-axis, the y-axis, the expected
cost also ranges from 0 to 1. One is the maximum cost that
could occur. The closer the performance is to zero on the y-
axis the lower the expected cost.

C

Replace every
Failure Opportunity

0

0.5

0 1

Expected

of Failure
Probability−Cost

Cost

A

B

Replace on

Fig. 2. The Operating Region

If the failures become too common, or the cost of failures
too high, rather that wait until a part fails we would be better
using the trivial “Replace every Opportunity” policy, as shown
in figure 2. (We assume we can replace parts fast enough to
avoid failure). In practice, maintaining equipment under these
circumstances is probably futile. It does however establish a
clear region, indicated by the light gray triangle, where useful
prognostic algorithms must operate. If the curve representing
the performance of the algorithm strays outside this triangle, it
is not useful for that range of probability-cost values. We call
the useful range of x values the algorithm’s operating range.

We can also compare the performance of different prognos-
tic algorithms against each other and the maintenance policy
used by the organization. Thus we can easily visualize the cost
savings obtained when using a prognostic algorithm instead
of an existing policy. The straight dark gray lines in figure 2
show the performance of three prognostic models. For each
model, the likelihoods are fixed. So, the expected cost will
also be a straight line, the linear sum of likelihoods times costs
times failure rate [1]. Looking at the lines labeled A and B we
can see that each achieves lower expected cost than the other
for some range costs and failure rate. The vertical distance
between the lines represents the cost savings. Noticeably, the
line labeled C is not best for any range, so will not be useful
under any circumstances. Both lines A and B leave the light
gray triangle, defining the limits of their operating ranges.
A prognostic algorithm will produce many such models and
therefore many lines. These can be combined to form a curve
showing the expected performance of the algorithm over the
full range of costs and failures rate.

One problem with this representation is its very generality.
It shows the expected cost for each algorithm, but the values
are normalized between zero and one. Under normalization,
the ratio of costs is maintained, important when comparing
different algorithms. However, it does not show actual dollar
figures, valuable to the end user. Here, we both simplify and
extend the cost curve representation to allow such figures to
be determined, say to easily establish the dollar range where
a prognostic algorithm is useful. We call the extension reverse
engineering, because, with only approximate knowledge, we
can reverse engineer both the potential cost savings and the
effective range of the algorithm. Figure 3 shows the additional
interface. The figure shows boxes for two costs: the cost of a
false alarm and the cost of an undetected failure.

Cost of Missed Failure $
����

����

Range for the Best Guess

Cost of Missed Failure $

Cost of False Alarm $

Failure Rate % 5

1000

10000

50000 3000

Fig. 3. Reverse Engineering Costs

By entering ”best guess” cost and failure rate information,
we can extract the range in terms of either of the two costs
or the failure rate by clicking the ”arrow button” beside each
item (the entered value is essentially the “mean”). Often, the
failure rate and cost of a false alarm are relatively easy to
estimate. The failure rate may be a matter of historical record.
The maintenance actions needed to determine if a fault has
actually occurred may be specified. The cost of these actions,
in terms of time spent and material used, may be recorded as
part of standard operation. The cost of an undetected failure,
however, may be more problematic as there are costs outside
the maintenance actions. So, for example, in Figure 3, when
we click the ”arrow button” aligned with the cost of missed
failure box, its range will be shown on the right side of the
interface based on the given failure rate and cost of false alarm.

III. A CASE STUDY

This section shows how our method works on a real-world
application, predicting problems with train wheels [3].

A. The Application Domain

Train wheel failures cause half of all train derailments and
cost the rail industry billions of dollars a year. They also
accelerate rail deterioration, ultimately leading to broken rails.
These breaks are dangerous and very expensive to repair. The
risk of wheel failure is increasing as global competitiveness
pushes railways to use larger and heavier cars. To limit
failures, wheels are closely monitored using impact detectors
[4]. Installed at strategic locations on the rail network, these
measure the dynamic impact of each wheel. When the impact
exceeds a threshold, 140 kips 1, the train must immediately
reduce speed and stop at the nearest siding. The offending
wheel must be replaced before the associated car is used again.
Although this reduces some of the costs associated with wheel
failure, such as those due to derailment and rail damage, it
increases other costs. Replacing a wheel can be a costly event,
particularly if the siding is remotely situated.

To reduce these extra costs, the Association of American
Railroads established policies [5] to help railways make main-
tenance decisions. An impact below 140 kips can be used for
prediction. In one policy, whenever the impact of a wheel
exceeds 90 kips a message is sent to the train operator. The
operator can use this to schedule maintenance on the affected
car but, due in part to the very high frequency of these alarms,
they are often ignored. Our own study suggests that operators
have good reasons for this. First, a large number of 90 kips
events never lead to wheel failure. There are a large number
of false alerts, and many good wheels replaced. Second, when
wheel failure did occur, the time from the warning to a failure
varies largely. It is difficulty to schedule accurately when
maintenance should occur.

B. Cost saving estimation for prognostic algorithms

To address these limitations, we began the WILDMiner
project [3]. Our data mining algorithms learn models from
impact data to produce real-time prognostics. For this study,
we used data collected over 17 months from a fleet of 804
large cars with 12 axles each. This produced a data set
containing 2,409,696 impact measurements grouped in 9906
time-series. We used 6400 time-series for training (roughly
the first 11 months) and kept the remaining 3506 time-series
for testing (roughly the last 6 months). Since there are only
129 occurrences of wheel failures in the training data set, we
selected the corresponding 129 time-series out of the initial
6400 time-series in the training data set. We created a data set
for modeling which contains 214364 measurements from the
selected 129 time-series. We built prognostic models following
our own data mining methodology [6]. Figure 4 shows the
performance of the overall algorithm, details can be found

1A kip is equal to 1,000 pounds. A 140 kips wheel impact is a combined
static and dynamic force of 140,000 pounds exerted by an individual wheel
at the wheel/rail interface when the freight car passes over the WILD site.

elsewhere [7]. We ran experiments using 13 different cost
matrices, different values for the cost of a false alarm and an
undetected failure, linearly interpolated to give the continuous
red line. The green line is for the 90 kips threshold. The line
is straight as the model is unchanged by a variation in cost or
failure rate, but the expected cost saving does change.

Fig. 4. Performance of a prognostic algorithm

The interface is used to determine where and by how much
the prognostic algorithm improves over the existing approach.
It also shows how they both fare in comparison with the
trivial policies of “replace on failure” and “replace every
opportunity”. The present, 90 kips, policy is generally better
than waiting until the wheel breaks, the left hand side of the
figure. But it would be completely the wrong policy should
the failure rate, or cost of a failure, become very high, on
the right hand side. Across most of the range our prognostic
algorithm is clearly much better. It offers significant savings
over the present policy. Pressing the limits button, at the top,
produces a vertical blue dashed line, which can be dragged
to anywhere in the figure. A middle mouse click on this line
shows the expected cost values at that point. With the line in
the position shown, the present policy represents a cost saving
of a bit less than 20% (1-0.41/0.50), our prognostic algorithm
a cost saving of just over 50% (1-0.27/0.50). The maximum
saving occurs slightly to the right of center of the figure. Here,
the present policy offers no saving, our prognostic algorithm a
saving of about 56%. Unlike the 90 kips policy, our algorithm
would still be useful for high failure rates and costs, so is
considerably more robust.

The actual savings will depend on the costs and failure rate
that occurs in practice. If we don’t know these values, then the
best we can do is to establish a range over which some savings
are achieved. In our tool, by pressing the limits button a second
time, we add the vertical dashed red lines in Figure 4. We then
drag them to where the prognostic algorithm intersects the
existing policy or to the ends of its operating range, which ever
is the lower. We could also position them closer together so
that the range always includes some worthwhile cost savings.
Noticeably, in the lower left hand corner all the policies have
around the same cost. Unless we can improve our prognostics

algorithm, waiting until failure occurs is as good as doing
anything else. The good news is that our algorithm is effective
over a wide range of probabilities and costs. The range is
greater than 30:1, more than an order of magnitude.

Fig. 5. Reverse Engineering Costs

The main costs in this application consist of that for a
false alarm (perhaps simply a visual inspection of the wheel)
and that for a missed failure (a wheel failure during normal
operation). We would like to express the useful range of the
prognostic algorithm in terms of these values. We expect that
these would be more readily understood by the end user.
By pressing the button marked “as a ratio”, the interface is
extended with a series of boxes. To do this we need some idea
of typical costs. We begin by putting in our best guess for the
failure rate say 1 in 10 or 10%, and the cost for a for a false
alarm, say $1000. We can then explore the range of possible
costs for a missed failure for which our algorithm would
be useful. Figure 5 shows this example. The maximum cost
savings would be achieved for a missing failure cost of about
$12000 and the range would be about $2000 to $100,000.

We argue that establishing a range is critical even when
costs are more trustworthy. To evaluate prognostic models,
Yang and Létourneau [7] developed both a score-based and a
cost-based method. The cost-based approach required com-
plete and accurate cost information. We used information
provided by an independent expert in the railway industry:
$500 per false alert, $5000 per undetected failure. How certain
can we be that these values are correct? The first should be
easy to obtain directly from maintenance records. The second
is much more difficult to estimate. A failure may cause a
secondary component to fail prematurely. It may cause delays
in the scheduled operations with negative consequences on
user satisfaction and the company’s reputation. It may cause
a safety hazard or even a catastrophe, costing millions of
dollars and loss of life. These secondary effects could greatly
influence decision regarding the adoption of a prognostic
model. With a good range of values, we can have some

Fig. 6. Using Expert supplied Values

confidence we can deal with unforeseen costs. In Figure 6,
we used a failure rate of 10%, the value in our data set. With
these values we get almost the maximum cost savings and we
have a large useful range indicated by the two red dashed lines
in the figure. By pressing the buttons marked with arrows, we
can the range in terms of the failure rate or the two costs. The
figure shows the range for the failure rate (about 2% to 50%).
In terms of the cost of missed failure, the range is about $750
to $45,000; in terms of the cost of false alarms the range is
about $55 to $3500.

IV. CONCLUSIONS

This paper has introduced a way to evaluate a prognostic
algorithm by estimating the cost savings that will be achieved
if it is deployed. We introduced a simple tool to help the
algorithm designer do this. We show that, even without accu-
rate or even complete information, it is possible to “reverse
engineer” the effective range of any algorithm. This should
give the designer some confidence the system will be useful
in the face on unseen or changing costs.

REFERENCES

[1] C. Drummond and R. C. Holte, “Cost curves: An improved method for
visualizing classifier performance,” Machine Learning, vol. 65, no. 1, pp.
95–130, 2006.

[2] C. Drummond, “Changing failure rates, changing costs: Choosing the
right maintenance policy,” in Proc. of AAAI Fall Symposium on Artificial
Intelligence for Prognostics, 2007.

[3] C. Yang and S. Létourneau, “Learning to predict train wheel failures,” in
Proc. of 11th international conference on Knowledge discovery in data
mining, 2005, pp. 516–525.

[4] S. Lechowicz and C. Hunt, “Monitoring and managing wheel condition
and loading,” in Proc. of International Symposium on Transportation
Recorders, 1999, pp. 205–239.

[5] A. A. Railroads, “Advanced technology safety initiative: Equipment
health management system,” Association of American Railroads, 2004.

[6] S. Létourneau, C. Yang, C. Drummond, E. Scarlett, J. Valdés, and M. Za-
luski, “A domain independent data mining methodology for prognostics,”
in Proc. of Essential Technologies for Successful Prognostics, 2005.

[7] C. Yang and S. Létourneau, “Model evaluation for prognostics: Estimating
cost saving for the end users,” in Proc. of 6th International Conference
on Machine Learning and Applications, 2007, pp. 304–309.

