1.

Example $S = a^i b^j$
$SS = a^i b^j a^i b^j$ $i >$ number of states
Pumping lemma gives words $a^i b^j a^i b^j$ P big

NOT SS

2.

For $m >$ number of states pumping lemma produces words $a^{m'} b^n$ $d^p b^q$
$m > m' =$ $m' + n > p + q$

3.

The squares have an interesting property. Consecutive squares differ by consecutive odd numbers.

$1^2 = 1$
$2^2 = 1 + 3$
$3^2 = 1 + 3 + 5$
$4^2 = 1 + 3 + 5 + 7$

This is because
$(n+1)^2 - (n)^2 = 2n+1$ (an odd number.)

So the gaps between the squares grows larger and larger. For any number M eventually no two squares will differ by M. Certainly if $x > M$ and $y > M$ then $x^2 - y^2 > M$ (unless $x= y$) since the closest they would be is $(M+1)^2 - M^2 = 2M+1 > M$. So when we pump, let $s = n^2$, $d^r = xyz = a^i a^r a^r$, the Pumping Lemma says that xyz, $xyyz$, $xyyyz$, ... are all in a^*, which are a^{p+q}, a^{p+r+2q}, a^{p+r+3q}, However, in this sequence consecutive terms differ by the constant q, while squares get further and further apart. Therefore these terms can not all be squares.

Alternate solution:
Assume the number of a’s in y string is k and the total number of a’s in xyz string is n^2. The string $xyyz$ contains $k + n^2$ number of a’s. If $k + n^2 \neq (n+1)^2$, which means $xyyz$ is not in language SQUARE;
If $k + n^2 = (n+1)^2$, which means $xyyz$ is in SQUARE, $k = 2n + 1$; obviously, the number of a’s of $xyyyz$ will be $2k + n^2 = 4n + 2 + n^2 \neq n^3$. So, $xyyyz$ is not in SQUARE. Therefore, it is impossible to find a division xyz that guarantee $xyyz$ and $xyyyz$ will also in SQUARE. This language is therefore not regular.
4.

The procedure is:

Step 1: From the start state, find the edge that leads out of it with label a. If no such edge is found, stop; else, follow the edge found and paint the destination state blue.

Step 2: From every blue state, follow each edge that leads out of it and paint the destination state blue. Then delete each edge that was followed.

Step 3: Repeat step 2 until no new state is painted blue, and then stop.

Step 4: When the procedure has stopped, if any of the final states are painted blue, then the machine accepts at least one word that starts with an a. If not, it does not.

5.

$S \rightarrow SS|NMN$

$M \rightarrow aM|a$

$N \rightarrow aB|bA$

$A \rightarrow a|aS|bAA$

$B \rightarrow b|bS|aBB$

N corresponds to the language EQUAL

6.

A CFG is ambiguous if there is at least one word in the language that has at least two derivation trees. It is called unambiguous otherwise.

(i)$S \Rightarrow XaX \Rightarrow aXaX \Rightarrow a\Lambda aX \Rightarrow a\Lambda a = aa$
$S \Rightarrow XaX \Rightarrow \Lambda aX \Rightarrow aaX \Rightarrow aa\Lambda = aa$

(ii)$S \Rightarrow a.SX \Rightarrow aaSXX \Rightarrow aa\Lambda XX \Rightarrow aaXa \Rightarrow aaaa = aaaa$
$S \Rightarrow aSX \Rightarrow a\Lambda X \Rightarrow aaX \Rightarrow aaaaX \Rightarrow aaaa = aaaa$

(iii)$S \Rightarrow aS \Rightarrow aa.S \Rightarrow aa\Lambda = aa$
$S \Rightarrow aaS \Rightarrow aa\Lambda = aa$
(iv)

(i) This language defines the words with at least one a’s.

$S \rightarrow bS \mid aX$

$X \rightarrow aX \mid bX \mid \Lambda$

(ii) This language defines the words with at least two a’s or empty.

$S \rightarrow aX \mid \Lambda$

$X \rightarrow aX \mid a$

(iii) This language defines all words with a’s, b’s, empty, or both.

$S \rightarrow aS \mid bS \mid \Lambda$

(v)

(i) $S \rightarrow bS \mid aX \mid a$

$X \rightarrow aX \mid bX \mid a \mid b$

(ii) $S \rightarrow aX$

$X \rightarrow aX \mid a$

(iii) $S \rightarrow aS \mid bS \mid a \mid b$