1. a) Rule 1: Λ, a, b are in PALINDROME
 Rule 2: Ok

1. b) To determine if a string is PALINDROME:
 Step 1: If length (string) < 2 then the string is PALINDROME, Otherwise, continue.
 Step 2: Compare the first letter(s) with the reverse of the last letter(s). If they match then delete them both and repeat Step 1.

Since x is PALINDROME, $x = \text{reverse}(x)$. Following the above algorithm to test x^n, two copies of x are repeatedly deleted (one from each, because they match) until the string is reduced either to Λ (when n is even) or to x (when n is odd). Both of which are PALINDROME, therefore x^n is PALINDROME.

1. c) Continuing the proofs above applied now to the PALINDROME string z^n, repeatedly remove two copies of z at a time, one from either end, until if n is odd only a PALINDROME string z remains. If n is even, then stop shrinking the string when zz remains. Note that any PALINDROME can be viewed as a string concatenated with its own reverse. zz is PALINDROME and $zz = z \text{reverse}(z)$, implies that $z = \text{reverse}(z)$ and z is PALINDROME.

1. d) By using the algorithm in 1. (a), we can reduce any PALINDROME to a central core of one or two letters. On $\{a, b\}$, there are as many PALINDROMES of length 2 (aa, bb) as there are of length 1 (a, b). To make PALINDROMES of length $2n$, choose a core of length 2, and then make n-1 choices for the letters to the left which determine the letters to the right. To make PALINDROMES of length $2n-1$, choose a core of length 1, and then make n-1 choices for the other letters. In each case n choices determine the word. Since there are two choices for letters, there are 2^n PALINDROME words of length $2n$ or $2n-1$.
2. Since T is closed and $S \subseteq T$, any factors in S concatenated together two at a time will be a word in T. Likewise, concatenating factor in S any number of times produces a word in T. That is any word in S^* is also in T. However we are given that $T \neq S^*$ so T contains some words that are not in S^*. We can conclude that S^* is a proper subset of T, in other words S^* is smaller than T, and in symbols $S^* \subset T$.

3. a) $aa \in AA$
 If $x \in AA$, then ax, xa, bx and xb are in AA.

3. b) $a \in NOTAA, b \in NOTAA$
 If $x \in NOTAA$ then bx and $xb \in NOTAA$
 If $x \in NOTAA$ and $x=by$ then $ax \in NOTAA$
 If $x \in NOTAA$ and $x=ya$ then $xa \in NOTAA$

4. a) $b^*(ab*ab*ab^*)^*$

4. b) $b*ab*(ab*ab^*)^*$

5. $(a + ba)*b^* + b^*a(a + ba)^*(\Lambda + b)$

6. EVEN-EVEN $(b + ab(bb)^a)$ EVEN-EVEN, where EVEN-EVEN stands for the regular expression $(aa + bb + (ab + ba)(aa + bb)^{(ab + ba)})^*$

7. Both regular expressions define words starting with a, ending with b and having no bb as substring.

8. $a(aa)^*$ gives all strings with an odd number of a's. $(\Lambda+a)$ gives the option of even length strings of a's. Every word must have one final b. $+b$ allows for the string with no a's. This is the same as any number of a's if any followed by a single b; a^*b.