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Abstract. The Internet of Things is a highly distributed, highly dynamic environment where 

data can flow among entities (the ‘things’) in complex data flow configurations. For data 

secrecy, it is important that only certain data flows be allowed. Research in this area is often 

based on the use of the well-known lattice model. However, as shown in previous papers, by 

using a basic result of directed graph theory (or of order theory) it is possible to use a less 

constrained model based on partial orders, for which a formal notion of secrecy can be de-

fined. We define a notion of ‘allowed contents’ for each ‘thing’ and then the data flows follow 

by inclusion relationships. By taking advantage of transitivity of data flows and of strongly 

connected component algorithms, these data flow relationships can then be simplified. It is 

shown that several data flow relationships can coexist in a network. Two small examples are 

presented, one on hospital applications and another on e-commerce. Implementation issues 

are discussed. 

Keywords: Internet of things, data secrecy, data confidentiality, privacy, data flow 

control, partial orders. 

1 Introduction and motivation 

Given that we have a network of entities representing an abstract view of an Internet of 

things (IoT) network, how can we set up the data communications channels between entities 

so that data originating in one entity can or cannot reach another entity? Being able to an-

swer this question is important to answer questions of:  

• Secrecy (also called confidentiality): can data stored in an entity reach another entity? 

This question has clear consequences for the question of privacy, which will be im-

plied henceforth. 

• Integrity: can data originating from an entity at some level of integrity reach an entity 

at higher level of integrity, thus potentially polluting it? 
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• Availability: can an entity always access the data it needs?  

It is of course a basic requirement for the IoT that “data should be able to flow as needed” 

with as little confinement as possible, but also “data should not flow to unauthorized par-

ties” [22]. With respect to privacy, we agree that "the fundamental nature of a privacy vio-

lation is an improper information flow” [13]. Paper [23] takes a broad view of the im-

portance of information flow control to achieve legal obligations in the IoT.  Many IoT 

diagrams in the literature show bidirectional channels among entities, however clearly for 

secrecy and privacy some channels may have to be unidirectional or absent altogether. 

These problems are common between the IoT and Cloud, since IoT is often implemented 

on Cloud platforms [10] [11] [22].  

We propose in this paper a new method to design networks with data flow topologies (i.e. 

configurations of entities and channels) that can satisfy secrecy requirements as specified 

in terms of logic expressions. We will also mention why we believe that integrity require-

ments are also addressed by the same method. Related important questions that we discuss 

in this paper are the following:  given certain data flow relationships in an IoT system, and 

the fact that we know that certain data originate in certain entities, which are the entities 

that will be privy to these data? Which are the most secret or least secret entities, in the 

sense that data that are in them cannot or can propagate to others?  

As already discussed in [14] and [24], it turns out that a simple result of directed graph 

theory, associated with well-known efficient algorithms, can be used to provide solutions 

for this problem, which are generic, i.e. independent of the application, or of the devices 

used to implement the entities, or of the physical network. These papers did not explicitly 

consider the IoT, which will be the focus of this paper. 

2 Literature review  

Although the concept of Internet of Things is not much older than our century, the literature 

on the general subject of ‘security in the IoT’ is already extensive, and several survey papers 

exist. However most of this literature is about attacks, vulnerabilities, access control, and is 

not particularly related to the problem of data flow control for security. We are interested 

in globally controlling all the possible ‘things’ where the data of certain other ‘things’ can 

end through sequences of data transfers, while access control controls data transfers be-

tween pairs of ‘things’. In this brief literature review, we cite only papers that are closely 

related to our problem and proposed solution. 

An extremely influential pioneering paper on the general subject of data flow in pro-

grams and networks is the one by Denning [4]. It showed that by using principles of lattice 

structuring, data flow security properties can be guaranteed in programs or networks. Al-

most all papers cited here refer to the lattice model by proposing applications, variants and 

enhancements of it. Our model has in common with the lattice model the fact that it is 

relational, rather than state-transition based. It generalizes Denning’s model because it uses 

partial orders instead of lattices. In [14] it is shown that partial orders are necessary and 
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sufficient for data flow secrecy and that they always exist. In [24] it is shown that they can 

be efficiently found. 

It should be noted that the subjects of flow control in the IoT and in the Cloud are closely 

intertwined and on the way to integration [2].  Many papers in this general research area 

propose the use of authentication, encryption and access control methods, including varia-

tions of RBAC, in the IoT. Many of these papers are reviewed in [16]. Although authenti-

cation, encryption and access control are mechanism for realizing flow control, we will 

limit our consideration here to methods for designing the overall flow control.  

Much classical literature, such as the paper of Samarati et al. [19] deals with the problem 

of preventing or blocking illegal flows. Our purpose is dual, i.e. to identify (in a current 

configuration) or permit (in a configuration to be established) all legal flows. 

Blackstock and Lea [3] address the need for IoT data flow platforms to create “systems 

suitable for executing on a range of real-time environments, toward supporting distributed 

IoT programs that can be partitioned between servers, gateways and devices”. They de-

scribe their experiences with two existing data flow platforms towards designing their own.  

Narendra Kumar and Shyamasundar [15] use a formalism based on identifying separate 

subjects and objects (rather than entities only) and separate reading and writing authoriza-

tions, rather than on a single CanFlow relationship as we do. They define a Readers and 

Writers Flow Model based on Denning’s lattice model.  Each entity is provided with a label 

defining the entities that can read from it and the entities that can write on it. This paper is 

in the context of Cloud computing. In a very recent follow-up paper [12], Khobragade and 

the two authors just cited extend their method to the IoT. We will come back to these papers 

in the Conclusions. 

Bacon et al. [1][22][18] have developed data flow control methods and software for the 

Cloud and the IoT using data tagging. We agree that data tagging seems to be necessary for 

configuring data flows. as we will see later in our paper.  

Schütte and Brost [21] present a policy language, LUCON, designed to control the rout-

ing of messages across services. Message routes can be model-checked to see whether they 

violate policies. The method uses message labels to which policies refer in order to decide 

what happens to the messages during routing. Again, this kind of labelling will play a role 

in our model. 

These papers agree on the fact that generic solutions for IoT data flow control exist, and 

should be used before application-specific ones. We share this opinion. 

Although IoT networks are usually represented as directed graphs (digraphs), we could 

not find a single paper that references or uses the basic result of digraph theory that is pre-

sented in the following section, and which is the basis of our method. The use of this result, 

instead of the classical lattice model, is the salient distinguishing characteristic of our ap-

proach.  
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3 Basic concepts 

This section is mainly an adaptation to the IoT context of results presented in [14][24].  We 

consider sets of abstract entities that can communicate among themselves by unidirectional 

abstract channels (bidirectional arrows in our diagrams mean that there are two channels in 

opposite directions). Entities represent ‘things’ or objects such as sensors, databases, etc.  

Each entity has computing and storage power, can also have sensing capabilities. We call 

network topology a given set of entities with channels between them, which is fixed at any 

network state. We use the letter e with primes and subscripts to denote variables for entities. 

We write CF1(e,e’) (can flow) to say that there is a channel that can carry data from e to e’. 

In practice, CF1 can be implemented in several ways, this will be discussed later.  We write 

CF(e,e’) if there is a communication path, consisting of one or several channels, from e to 

e’. If the data of e is encrypted so that e’ cannot decrypt it, then the relation is false. 

Definition 1: CF(e,e’) is true if: 

a) CF1(e,e’) or 

b) there is a e” such that CF1(e,e”) and CF(e”,e’). 

So CF is a transitive relationship. This is a pessimistic view, which can make networks 

over-protected; it ignores the fact that some entities may decide to block some data.  Our 

(perhaps simplistic) view is that if Alice talks to Bob and Carl talks to Alice, Carl can expect 

whatever he says to end up with Bob. We also assume that CF is reflexive, since we can 

assume the existence of a channel from any entity to itself, although for simplicity such 

channels will be left implicit. It is important to note that, by its transitivity and reflexivity, 

CF is a quasi-order [7]. The relation CF will be shown in the form of directed graphs (or 

digraphs). To enhance this generic view, in Section 6 we shall informally introduce the 

notion of several separate data flows. 

We say that an entity e can hold data x, written CH(e,x), iff data item x can be present in 

e. CH(e,x) can be a fact known a-priori, an axiom. For example, a sensor in a refrigerator 

can hold a temperature reading. In other cases, CH(e,x) can be a derived fact, if there exists 

a e’ such that CH(e’,x) and CF(e’,e). So, if there is a channel from the sensor to a Home-

Computer (HC), then the HC can also hold the temperature reading.  

It would be possible to continue in the same way, considering the level of granularity of 

single data items; however in this paper we won’t need to reason at this fine level of gran-

ularity. Henceforth we use the notation CH(e,e’) to say that entity e can hold the data in e’. 

In the example above, if there is a channel that can carry data from a sensor in the refriger-

ator to the HC, we say that both the sensor and the HC can hold all data in the sensor. In 

our examples below we will construct networks by using a reverse principle, i.e. starting 

from the fact that HC can hold all data in the sensor, we conclude that there is a flow, or a 

channel, from the sensor to the HC. 

Formally, we write: 

Definition 2: 

a) CH(e,e) is our axiom 

b) CH(e,e’) iff CF(e’,e) is our inference rule 
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The following definition will allow us to refer to all the data that can be contained in an 

entity, given a data flow configuration: 

Definition 3: 

 CHS(e) = {e’ such that CH(e,e’)} 

CHS stands for CanHoldSet. For example, if there is a path from a fridge to a HC, and 

from a thermostat to the same HC, then the entity HC can hold temperatures from both the 

fridge and the thermostat. 

Clearly, we have: 

Property 1:  

a) CF(e,e’) iff CHS(e)CHS(e’)  

b) CF(e,e’) and CF(e’,e) iff CHS(e) = CHS(e’)  

These definitions could appear to be counterintuitive at first because it might be thought 

that two different entities could be able to acquire the same data directly and independently, 

consider for example two independent sensors that sense the same conditions. When this is  

possible, it is still safe to assume, from the security point of view, that there is a bidirectional 

channel between the two entities. 

We now describe the basic result of digraph theory that is at the basis of our method.  

This result also appears, in simpler form, in the theory of relations and in the theory of 

orders [7], but in our research area the graph-theoretical view may be the most useful, and 

so we adapt here the theory presented in [9]. We define components of our digraphs to be 

sets of entities such that for any two entities e and e’ in the set, CF(e,e’) and CF(e’,e). By 

Property 1, CHS(e)=CHS(e’). We are interested only in components that are maximal, i.e. 

they are not contained in larger components, so henceforth the adjective maximal will be 

implicit when we will mention components. Let us condense each component in a single 

node in the digraph. Since the original CF digraph represented a quasi-ordering, the result-

ing condensed digraph represents a partial order [7]: this is because all symmetric relation-

ships have disappeared, having been encapsulated in nodes. Let us call [e] the node corre-

sponding to the component containing entity e (clearly,the mapping e→[e] is a function). It 

is easily seen that there is a path (a CF relationship) from e to e’ in the original digraph iff 

there is a path from [e] to [e’] in the condensed digraph [9].  

There are well-known and efficient (linear-time) algorithms to find condensed digraphs, 

and their use will be demonstrated in this paper. It is important to note that such condensed 

digraph will be acyclic. We will call such algorithms strongly connected components algo-

rithms. We use Tarjan’s algorithm [25] as implemented in MATLAB [8]. 

As a generalization of the above notation, we allow specifying flow relationships be-

tween sets of entities. For S and S’ finite sets of entities, CF(S,S’) means that CF(e,e’) holds 

between each eS and all e’ S’. The sets can be specified either by enumeration, or by 

set-theoretical expressions, based on the attributes of entities as we will see. For example, 

if S is a set of patients having a specific illness and S’ is a set of doctors that specialize in 

that illness, then CF(S,S’) means that data can flow from each patient in S to all doctors in 

S’. 
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So entities e have named attributes, in variable numbers and according to application 

needs. We assume that each entity has attributes according to application needs. Hence the 

constraint above can be specified as follows:  

CH(e,e’) if patient(e) and illness e=stroke and doctor(e’) and specialty(e’)=stroke  

By Propery 1, this implies CF(S,S’), where S is the set of all such patients and S’ is the 

set of all such doctors. 

We refine this view by allowing CF relationships to be specialized by the type of data 

involved. We shall see later an e-commerce example where there are two different CF re-

lationships, one for ordering and one for billing. Many different CF relationships can coex-

ist in a network. In real life, Alice might talk to Bob on work matters, but not on private 

matters. Knowing this, Carl can talk to Alice on private matters, assuming that this will not 

end up with Bob. 

Note finally that we use the term component in the described graph theoretical meaning. 

This is quite different from the term’s use in some IoT literature, where it can denote hard-

ware entities with specific physical characteristics. In our sense, an entity that belongs to a 

singleton equivalence class is also a component. On the other hand, entities that are physi-

cally identical can belong to different components in our sense. We use the term device to 

refer to components in this other sense. 

4 The method  

Our method is based on the idea that if an entity e can hold all the data that an entity e’ can 

hold (plus possibly other data) then CF(e’,e) should be true. So each entity will have attrib-

utes and will be associated with a logical expression, based on the available attributes, de-

fining the set of data that it can hold. The channels will be placed by calculating the inclu-

sion relationships between these sets. This can be done dynamically, in the sense that every 

time a new entity is defined, the channels it should have can be calculated, by checking the 

data set inclusion relationships between the new entity and the existing ones (this step is 

not trivial from the point of view of computational complexity, and will be discussed in 

future papers). 

The method described so far may be impractical, since it might generate ‘too many chan-

nels’. In terms of digraphs, its result can be visualized as a transitively closed digraph, see 

Figure 1a) for an example. According to the properties presented in the previous section, a 

streamlined digraph can be obtained in the following way: 

1) Using a strongly connected components algorithm, calculate the compressed di-

graph for the CF relation (recall that it will be acyclic). 

2) Calculate the transitive reduction of the compressed digraph, see Figure 1 b) where 

each box represents a component (often a single algorithm will do both 1) and 2). 

3) For each component in this last digraph, connect the entities (if they are more than 

one) in any way that maintains the mutual reachability relation;  

4) For any two components S and S’ such that S⊆S’, connect one or more element(s) 

in S to one or more element(s) in S’ (Figure 1c). By transitivity, CF(S,S’). 
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Figure 1a): A data flow graph; b) Its partial order of components; c) An equivalent data 

flow graph 

In practice data flow graphs may be large and complex, with  component nesting difficult 

to unravel, but each of the algorithms involved is (at most) polynomial, thus ‘efficient’ in 

complexity theory terms.Therefore, it might be conceivable to re-execute the procedure 

every time there is a change in a network, or periodically, whenever a network reconfigu-

ration is desired. 

Note that several communication paths that are direct in Figure 1a) are indirect by tran-

sitivity in Figure 1c).Our method may produce communication patterns inappropriate for 

the intended application, but it won’t produce any that violate secrecy constraints. Step 3) 

can be done in different ways: in Figure 1 we implemented the goal of reducing the number 

of edges by using transitivity, but other goals can be implemented. Therefore, we propose 

the use of this method as a basic method only, that may be adapted to the needs of specific 

networks. 

The use of this method will be assumed in the rest of the paper. The theory above will 

be used implicitly. 

5 Network creation: A hospital example 

We use here small examples to demonstrate our method, but as mentioned this is scalable 

because of the existence of efficient algorithms.  

As a first example, we consider a toy hospital system. In its final configuration, the sys-

tem will be as in Figure 2, however we will show how it can be built step by step.  

The types of the entities are: PressDetect, PulseDetect, NurseWkstn, DocWkstn, Reani-

mationWkstn,WardDB, ChiefMedicWkstn, AdminDB (in Figure 2, numerals are added to 

the type names in order to distinguish different instances). We have three patients, Sam, 

Bob and Sally, which however do not appear as entities but as parts of the labels of the 

entities. In other words, we have labels: SamPress, BobPulse, SallyPress etc. We also have 

some statistical data that are created in some entities. When an entity of one of the men-

tioned types is created, it is associated with a label, which indicates the data that it can hold. 

We use a command New to create a new entity with a label. A channel, which is a CF 
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relationship, is automatically created between the new entity and all the previously created 

entities such as the label of the new entity is included in the label of the previously existing 

entity. Then the method of Section 4 can be executed to reduce the edges if possible. For 

example,  

 

New(A) = Nurse1Wkstn{SamPress, BobPulse, Stats1}. 

New(B) = Nurse2Wkstn{SallyPulse,Stats2}. 

New(C) = Doc1Wkstn{SamPress, BobPulse, Stats1}. 

New(D) = Doc2Wkstn{SallyPulse,Stats2}. 

New(E) = Ward1DB{SamPress, BobPulse, Stats1}. 

New(F) = Ward2DB{SallyPulse,Stats2}. 

New(G) = ReanimationWkstn{SamPress, BobPulse, SallyPulse}. 

Etc.  

 

After C is created, we have CF(A,C) and CF(C,A) since CH(A)=CH(C). Similarly for D 

and B.  After H is created, we have CF(H,A), CF(H,C) etc. So channels are created between 

entities as the entities are created. In the graph of Figure 2, we have placed the entities in 

ascending order of inclusion, starting from those that have the smallest CHSs at the bottom. 

Certain things of interest can be seen: for example, we say that BobPulse is a secret of the 

set of entities {I,G,A,E,C,L,K} which are the only entities that CanHold this data (in terms 

of  [14] [24] this is the Area of BobPulse). It can also be said that entities that appear towards 

the bottom of the partial order are the least secretive, because they allow their data to flow 

Figure 2: A hospital example 
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up to other entities. On the contrary, entities appearing at the top {L,K} are the most secre-

tive, because their data cannot  flow further. They are also the entities that can hold the most 

data, in fact they can hold all data available in the network in this example. 

Note that there are some non-singleton components in this digraph, they are 

{A,C,E},{B,F,D},{L,K}. In each such component, the entities are mutually reachable and so 

they can all hold the same data.  The partial order of equivalence classes for this digraph is  

shown in Figure 3. 

  

 
 

Figure 3. Partial order of components for the hospital example 

Note also the following important point. Suppose that for some reason, the entities are 

created in the following order: first H, then L, then C. In practice this might lead to a mis-

configuration and there might be application-specific protocols to prevent this from hap-

pening. Without this, our method will produce the following results. After L is created, data 

can flow from H to L, and after C is created, data can flow from H to C, also from C to L. 

At this point, transitive reduction will eliminate the direct flow from H to L. Secrecy con-

straints will never be violated and whatever order is followed in the creation of entities, we 

will always end up with the network depicted in Fig. 2. 

6 Separate data flows: An e-commerce example 

We introduce now a second example, where for readability we have done some simplifica-

tions of notation with respect to the previous one (for example, we don’t explicitly show 

that each entity contains its own data). This is an e-commerce network with four clients, 

two retailers and four suppliers. Client 3 and 4 collaborate and so they share data. We have 

two retailers. Finally, we have four suppliers, of which the first three collaborate and so 

share client data. After having created all the entities, the network is as shown in Fig. 4. 

. 
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Figure 4. An e-commerce example 

The partial order of equivalence classes for this example is shown in Figure 5. 

 

 

 

 

 

Again, this example can be analyzed to see what data are secret of which entities. 

This example is useful to show the (usual) necessity of having several coexistent but 

separate data flows in the same network. The previous diagrams dealt with ordering infor-

mation. Billing information travels in the opposite direction, and has different secrecy re-

quirements. Since each client should get only its own bills (except perhaps for Clients 3 and 

4 who share bills), then this requires defining as many separate data flows as there are cli-

ents. Figure 6 shows the data flow for the bills of Client 1 (in this case we show a downward 

flow for consistency with the previous figure). To keep the two flows separate, we can 

identify the label sets that are relevant for each flow. For example, the labels for Supp1 

could be as follows: Supp1:Order{Client1,Client2};Bill1{Bill1-1};Bill2{Bill1-2}. This 

Supp1
{Client1,Client2}

Supp2
{Client1,Client2}

Supp3
{Client1,Client2}

Retail1
{Client1,Client2}

Client1 Client2 Client4Client3

Supp4
{Client2,Client3,

Client4}

Retail2
{Client2,Client3

Client4}

Supp1,Supp2,
Supp3

Retail1

Client1 Client2
Client3,
Client4

Retail2

Supp4

Figure 5. Partial order of components for the e-commerce example 
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means that Supp1 participates in three data flows, one for ordering and two for billing, for 

each of its two possible clients. This starts to be complex, but seems to be necessary for the 

secrecy of bills. 

 

 
Figure 6. Partial billing flow in the e-commerce example 

7 Network re-configurations 

We must allow for data flow changes that can be requested by end users or administrators, 

entities which we see as external to our networks. These changes must be in some way 

approved by authorities in charge of protecting security and privacy in the system. Often 

one such change will motivate others in order to maintain useful dataflows. In Fig. 4, sup-

pose that there is a request by which Client1 should be allowed to subscribe to Retail 2, and 

the request is granted. Then Retail2{Client2,Client3,Client4} becomes Retail2{Client1,Cli-

ent2,Client3,Client4}. Retail2 can no longer flow to Supp4. So another authorization seems 

to be necessary for Supp4{Client2,Client3,Client4} to become Supp4{Client1,Client2,Cli-

ent3,Client4} and Supp4 or some conflict of interests among clients may refuse this second 

change. Therefore, the requesting and granting of authorizations cannot be purely local, it 

must be done with a global plan to do all the other changes that may be necessary to return 

to a desired global flow.A method to avoid such problems would be to deny authorizations 

unless it is possible to grant at the same time all others that are necessary to maintain the 

required flow structure. All such authorizations would have to be granted at the same time. 

The mechanisms for these label changes will vary according to the nature of the system. In 

almost every system there will be incompatibilities that cannot be violated, e.g. if two cli-

ents are in conflict of interest, it must be impossible for each of them to hold secret data 

from the other, or even for a third party to jointly hold their secret data. Label changes that 

lead to such combinations must be refused. 

From the point of view of access control theory, it is interesting to note that such trans-

formations are essentially the same that are implicit in classical mechanisms such as ‘High 

Supp1
{Bill1-1}

Supp2
{Bill2-1}

Supp3
{Bill3-1}

Retail1
{Bill1-1,Bill2-1,Bill3-1}

Client1
{Bill1-1,Bill2-1, 

Bill3-1}
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water mark’ and ‘Chinese wall’. The former is the attribution of new authorizations and the 

latter is the preclusion of certain combinations of authorizations [20].  

We leave entity disappappearance, removal of authorizations, declassification of data, 

etc. to further research [18][12]. In some cases, local repairs may be possible, and at worst 

a global reorganization according to our method might be necessary. 

8 Towards a language for IoT secrecy requirements 

Clearly, it is necessary to have a language for defining abstract entity types and allow the 

creation of different topologies of instantiated entities, with different allowed contents. We 

will in this section give an idea of how such a language could be constructed, although it 

has the potential of becoming quite complex. For ease of use, this language might have to 

provide for the definition of entities that are not devices or ‘things’ but can be instrumental 

in defining attributes of ‘things’, such as wards, nurses, doctors, patients and clients, etc 

Essentially, the language must provide: 

• primitives to define entity types with attributes, such as entity Ward, entity Supplier 

etc. We will distinguish two types: types for real ‘things’ in the network, and they will 

prefixed by capital T, and types for logical concepts used to define the attributes of 

the ‘things’. These will be prefixed by a capital L.  

• an operator to define New entities with given attributes, and one to Dismiss them 

• operators to Add or Remove attributes from entities 

• primitives to define constraints for data flows; below we have simply a CH relation-

ship as we will see.  

 In our hospital example, we could have the following types: 

 LType Patient(PatientId)   (to define logical type Patient) 

TType PressDetect(DetectId) (to define a device PressDetect with a DetectId) 

TType PulseDetect(DetectId) (to define a PulseDetect) 

LType Ward(WardId). 

LType Nurse(NurseId) 

TType NurseWkstn(WkstnId)   

etc., and the following operators: 

Assign (DetectId,Patientid)       (to assign a detector to a patient) 

Assign (PatientId, WardId)  (to assign a patient to a ward) 

Assign (NurseId,WardId)  (to assign a nurse to a ward) 

Assign (WkstnId,WardId)   (to assign a workstation to a ward) 

Etc. 

We need also a number of CanHold definitions, which generalize the previously intro-

duced labels, such as the following one: 

CH(WkstnId,DetectId) if Assign(PatientId,WardId(WkstnId)) and Assign(DetectId,Pa-

tientId) 

The network construction can start as follows: 



New Ward (Emerg).  

New NurseWkstn(EmergWkstn) 

New Nurse (Alice) 

Assign (Alice,Emerg). 

Assign (EmergWkstn,Emerg) 

New Patient (Sam). 

Assign (Sam,Emerg) 

New PressDetect(PRD0001) 

Assign (PRD0001, Sam) 

Etc.

Now, by the CH definition we know that EmergWkstn can hold the data in Sam’s pulse 

detector PRD0001 and so data can flow from the latter to the former. This establishes a CF 

relationship, hence a channel. So we have created a network with two physical devices and 

a channel, and the procedure presented in Section 4 can be executed, although of course it 

won’t find anything to improve. 

In some systems there can be many more CanFlow requirements than NoFlow require-

ments, or many more CanNotHold requirements than CanHold. in fact the negative require-

ments could be more obvious for the designer than the positive. One could allow the de-

signer to specify the negative requirements, and then the positive ones could be found by 

complementing the negatives. Another possibility would be to allow the designer to specify 

both positive and negative requirements, but this would require a system to detect and cor-

rect inconsistencies. We leave these issues for future research. 

9 Implementation issues  

The conventional way to enforce data flows is by enforcing access controls on the indi-

vidual channels. The literature on techniques available for this is extensive, and one recent 

comprehensive paper with a good literature review is [16].  

Tags allow deciding whether certain data can cross certain channels; they must follow 

the data as they move in the network. Data tagging for access control and flow control has 

been studied in the literature [1] [5] [18], as well as provenance tagging [17] but they are 

not part of widely implemented access control method, because these consider tags only for 

subjects and data objects (such as databases). In order to implement our method, data must 

be tagged in two ways: to determine what flow the data belongs to (ordering, billing) and 

to determine the data’s provenance (Pressure detector, Client1 …). 

It is likely that implementations of our method will require a combination of routing and  

encryption. Routing will be based on the tags and then the question that comes up is how to 

combine our method with IoT routing methods.  

The Routing Protocol for Low-Power and Lossy Networks (RPL) is a protocol defined 

by the Internet Engineering Task Force (IETF). It is one of the best-known protocols for 

routing in the IoT [26], and it supports ad hoc configuration. RPL uses for routing DODAGs 

(Destination-Oriented Directed Acyclic Graphs). DODAGs describe efficient routes be-

tween the sink and other nodes for both collecting and distributing data traffic. DODAGs 

are usually constructed on the basis of criteria of transmission efficiency called OF (Objec-

tive Functions). New entities will autonomously find their place in the network by using 
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OFs. The ideas presented in this paper may lead to research on methods for combining our 

own acyclic data flow digraphs with the DODAGs, thus including data flow constraints in 

RPL routing, hence possibly in Objective Functions.   

Encryption appears to be necessary to establish channels that go through nodes that 

should not be able to read the data. 

Clearly, implementation issues require further research. 

10 Discussion 

Although one of the basic requirements IoT is that the system topology should be very 

dynamic and varied, at present and for the foreseeable future, the IoT is a vast collection of 

customized subsystems, each with its own set of users, data sets and functionalities, as well 

as data security requirements: e.g. hospital networks for hospitals, home networks for 

homes, warehouse systems for companies, fleets for truck companies, etc. Each subsystem 

will have its own specific organization and data flows. In specific networks, entities are 

organized according to these structures, and new entities that enter a network must join pre-

extisting structures. These structures of course can be changed, but each change must be 

prepared by the re-evaluation of several aspects, in our case of the data security aspects. 

We have limited ourselves to a high-level view, based on entities that have a functional 

meaning for the end-user. In reality, the IoT includes types of entities that we have not 

considered, such as routers, gateways, etc. Our view could be extended to such other enti-

ties: routers and gateways are also limited by the kinds of data that they can hold. However 

if encrypted data is transmitted through an entity that cannot decrypt it, then we cannot say 

that data cant flow to this second entity by effect of this transmission. This transmission 

belongs to a lower logical layer. 

Although we have concentrated ourselves on secrecy, we argue that our method takes 

care simultaneously of the main aspects of the two data security properties of secrecy and 

integrity. This is because each of these properties specifies what should be the origin of the 

data each entity can hold, and this is what our labels specify. Concerning availability, our 

method can only allow to conclude that certain data ‘can be available’ to certain entities, 

but for them to be actually available the ‘possible’ data transfers must be executed. In other 

words, our model does not guarantee that a system will actually function, it can only guar-

antee conformity to data security requirements, essentially that certain data can or cannot 

reach certain ‘things’. 

11 Conclusions and future work 

We have presented a method for configuring IoT networks in such a way as to comply to 

logically specified security data flow constraints.  The method is exact, in the sense that it 
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allows all and only specified data flows. It is also scalable, since it uses efficient algorithms. 

It could be seen as a generalization of well-known Mandatory Access Control methods.We 

have also proposed a language for specifying the constraints.   

With respect to previous work, the approach that is most similar to ours is the one of 

[12]. As mentioned, in this paper a distinction is made between subjects and objects and 

labels are assigned to subjects and objects to define which objects subjects can read or write. 

However in the IoT it may be impossible to distinguish between subjects and objects, or 

between reading and writing (these distinctions are common in access control, less common 

in the IoT). In addition, the labels in our method determine directly what the data contents 

of each entity can be. Perhaps the  approaches of our two methods can be mutually trans-

formed, but ours uses a more direct notation, based on the possible data contents of the 

‘things’, as specified by our logical expressions.  

Surely, the solutions we have given for our two examples are not different from those 

that could have been obtained by intuition, without using our method. We take this fact as 

a confirmation that our method finds acceptable solutions, and would continue to find them 

for examples of thousands of entities, possibly generated by requirement languages such as 

the one we have sketched. 

Based on our concepts, one can imagine graphic interfaces that would make it possible 

to design IoT systems with secrecy requirements by manipulating on the screen graphic 

representations such as the ones we have used. For scalability however, abstraction mech-

anisms such as encapsulation will have to be devised. It is interesting to consider that the 

problem of removing unwanted communication paths in existing networks is much more 

difficult than the problem of allowing only certain paths at the design stage, in fact we have 

not been able to find any solution for the first problem. This is because unwanted paths can 

be part of other paths that are wanted. 

Acknowledgment. This research was funded in part by the Natural Sciences and Engi-

neering Research Council of Canada. We are grateful to Dr. N.V. Narendra Kumar for hav-

ing carefully reviewed the paper. 

References 

1. J. Bacon, D. Evans, D.M.Eyers, M. Migliavacca, P.Pietzuch, B.Shand. Enforcing end-to-end ap-

plication security in the Cloud. Proc. Middleware 2010, LNCS 6452, 293–312. 

2. A. Botta, W. de Donato, V. Persico, A. Pescapé. Integration of Cloud computing and Internet of 

Things: A survey. Future Generation Computer Systems 56 (2016) 684-700. 

3. M. Blackstock, R. Lea. Towards a distributed data flow paradigm for the Web of Things. Proc. 

5th ACM Intern. Workshop on the Web of Things (WoT 2014), 34-39. 

4.  D.E. Denning. A lattice model of secure information flow. Comm. ACM 19(5), 1976, 236-243. 

5. S. Etalle, T.L. Hinrichs, A.J. Lee, D. Trivellato, N. Zannone. Policy Administration in Tag-Based 

Authorization. In: Proc. 9th Intern, Symp. on Foundations and Practice of Security. FPS 2012. 

LNCS, vol 7743. Springer. 



16 

 

6. D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli. Role-based access control. 2nd Ed. Artech House, 

2007. 

7. R. Fraïssé. Theory of relations. North-Holland, 1986. 

8. A. Gilat. MATLAB: An Introduction with applications. 2nd Ed. John Wiley & Sons, 2004.  

9. F. Harary, R.Z. Norman, D. Cartwright. Structural models: an introduction to the theory of di-

rected graphs. Wiley, 1965. 

10. J.Gubbi, R.Buyya, S.Marusic, M.Palaniswami. Internet of Things (IoT): A vision, architectural 

elements, and future directions. Future Generation Computer Systems 29(7), (2013), 1645-1660. 

11. L.Jiang ; L.D. Xu ; H. Cai ; Z. Jiang ; F.Bu ; B. Xu. An IoT-oriented data storage framework in 

Cloud computing platform. IEEE Trans. on Industrial Informatics, 10(2) (2014), 1443 – 1451. 

12. S. Khobragade, N. V. Narendra Kumar, R. K. Shyamasundar. Secure synthesis of IoT via readers-

writers flow model. Proc. Intern. Conf. on Distrib. Computing and Internet Techn. (ICDCIT 2018), 

LNCS 10722, 86–104. 

13. C. E. Landwehr. Privacy research directions. Comm. ACM 59(2) (2016) 29-31.  

14. L. Logrippo. Multi-level access control, directed graphs and partial orders in flow control for data 

secrecy and privacy. Proc. of the 10th Intern. Symp. on Foundations and Practice of Security (FPS 

2017), LNCS 10723 (2018), 111-123. 

15. N.V. Narendra Kumar, R. Shyamasundar. Realizing purpose-based privacy policies succinctly 

via Information-Flow Labels. Big Data and Cloud Computing (BDCloud'14), 753-760.  

16. A. Ouaddah, H.Mousannif, A. Abou Elkalam, A. Ait Ouahman. Access control in the internet of 

things: big challenges and new opportunities. Computer Networks, 112 (2017), 237-262. 

17. J. Park, D. Nguyen, R. Sandhu. A provenance-based access control model, 2012 10th Annual 

Intern. Conf. on Privacy, Security and Trust (2012), 137-144. 

18. T. Pasquier, J. Bacon, J. Singh, D. Eyers. 2016. Data-Centric Access Control for Cloud Compu-

ting. Proc. 21st ACM Symp. on Access Control Models and Technologies (SACMAT '16), 81-

88.  

19. P. Samarati, E. Bertino, A. Ciampichetti, S. Jajodia. Information flow control in object-oriented 

systems. IEEE Trans. On Knowledge and Data Eng., 9(14), 1997, 524-538. 

20. R.S. Sandhu. Lattice-based enforcement of Chinese Walls. Computers & Security  Vol. 11(8), 

1992, 753-763 

21. J. Schütte, G.S. Brost. LUCON: Data flow control for message-based IoT systems. arXiv preprint 

arXiv:1805.05887, 2018 - arxiv.org 

22. J. Singh, T.Pasquier, J.Bacon, H.Ko, D.Eyers. Twenty security considerations for cloud-supported 

Internet of Things. IEEE Internet of Things Journal, 3(3) (2016), 269-284. 

23. J. Singh, T. Pasquier, J. Bacon, J. Powles, R. Diaconu, D. Eyres. Big ideas paper: policy-driven 

middleware for a legally-compliant Internet of Things.  Proceeding Middleware '16 Proceedings 

of the 17th International Middleware Conference. Art. No. 13. 

24. A. Stambouli, L. Logrippo. Data flow analysis from capability lists, with application to RBAC. 

Information Processing Letters, 141(2019), 30-40. 

25. R. E. Tarjan. Depth-first search and linear graph algorithms, SIAM Journal on Computing, 1(2) 

(1972), 146–160. 

26. T. Winter, P. Thubert (eds.). RPL: IPv6 routing protocol for low-power and lossy networks. In-

ternet Engineering Task Force IETF RFC 6550, March 2012. 

 

 


