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Abstract

This thesis is concerned with strong-stability-preserving (SSP) high-order time dis-
cretizations, which have been specially developed for hyperbolic partial differential
equations over the past 20 years. The main goal of the thesis is to construct ex-
plicit, s-stage, SSP Hermite-Birkhoff (HB) time discretization methods of order p
with nonnegative coefficients for the integration of hyperbolic conservation laws.

The Shu-Osher form and the canonical Shu-Osher form by means of the vector
formulation for SSP Runge-Kutta (RK) methods are extended to SSP HB methods.
The SSP coefficients of k-step, s-stage methods of order p, HB(k, s, p), based on k-
step methods of order (p — 3) with s-stage explicit RK methods of order 4, and based
on k-step methods of order (p — 4) with s-stage explicit RK methods of order 5,
respectively, for s = 4,5,...,10 and p = 4,5,...,12, are constructed and compared
with other methods.

The fairly good efficiency gains of the new, numerically optimal, SSP HB methods
over other SSP methods, such as Huang’s hybrid methods and RK methods, are
numerically shown by mean of their effective SSP coefficients and largest effective
CFL numbers. The formulae of these new, optimal methods are presented in their

Shu-Osher form.
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Chapter 1

Introduction

In this thesis, we develop a class of high-order, time discretization, Hermite—Birkhoff
(HB) methods for hyperbolic conservation laws. The main goal is to handle disconti-
nuities even from smooth initial data, which result in spurious oscillations, overshoots
and numerical instability in solving hyperbolic partial differential equations (PDEs).
The thesis is concerned with strong stability preserving (SSP) HB methods to avoid
these troubles. In this chapter, we provide background information and motivation

for the SSP HB methods developed in this thesis.

1.1 Literature and motivation

1.1.1 The need for SSP methods

Numerical methods play an important role and made enormous progress for finding
solutions of ordinary differential equations (ODEs). Such methods are valuable tools
since finding analytic solutions is not often easy nor possible. There are many excellent
books, for example [1], [13] and [26], which present many well-studied methods such
as Runge-Kutta (RK), linear multistep (LMS) and general linear multistep (GLM)
methods.
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SSP methods are ODE solvers designed for solving ODEs obtained from the
spatial discretization of time-dependent PDEs, specifically hyperbolic conservation
laws.

In the one-dimensional scalar case, a hyperbolic conservation law has the form

Yo+ 9(W)e =0, y(x,0) =yo(x), (1.1.1)

where y is a function of z and ¢.

There are some reasons to study hyperbolic conservation laws (see [30] for an
introduction to hyperbolic conservation laws and their numerical solutions). For
instance, this class of PDEs comes from many practical problems such as conservation
of mass, energy and momentum problems. Moreover, solving these equations has some
special difficulties like shock formation.

We consider a simple example of hyperbolic conservation laws, namely, a shock
tube problem in one dimension ([31, p. 15-26], [30, p. 3-4], [27, p. 72]). In this physical
example, a tube filled with gas is divided into two regions by a membrane. We suppose
that the left region of the tube has gas with higher density and higher pressure than
the right region. When the membrane is removed, the gas flows. Besides, the motion
of the gas is from left to right. The initial velocity is always zero. The result gives
shock and rarefaction waves. The shock wave propagates to the right region and the
rarefaction moves in the opposite direction. The shock tube problem is a special case

of the Riemann problem, which has the form (1.1.1) with

Ui ifz <0,
Yo(z) =
Yr ifx >0,
here y; and y, are constant states.
To find the numerical solution of (1.1.1), we use the method-of-lines. In particu-

lar, we first discretize the spatial derivative g(y), by finite elements, finite difference,

finite volumes or spectral methods (see [3, 14, 23, 44]). Thus, spatial discretization
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yields a set of time-dependent ODEs with initial condition of the form:

Yo tut), i) =, (112)
where y € R” is a vector of approximations to the exact solution y(z,t) of PDE (1.1.1)
and f : R x RY — RY represents a discretization of the spatial variables forming a
system of semi-discrete equations. The size of system (1.1.2) is usually very large. It
depends on Az, the parameter in the spatial discretization. In other words, smaller
Az leads to larger ODE systems. Now these ODE systems can be integrated by using
some standard time-stepping techniques such as general linear, linear multistep or RK
methods. Here a relevant question concerns stability and convergence. For problems
with smooth solutions, a linear stability analysis is enough. However, if the PDE is
nonlinear and the solution is not smooth, for instance hyperbolic partial differential
equations with discontinuous solutions, linear stability analysis is not adequate (see
[10] for an example and detail explanation). One of the best known nonlinear stability
conditions is total variation diminishing (TVD), which was suggested by Ami Harten
in 1983 [14]. The TVD property is one important step to prove the convergence of
the numerical solution.

The development of SSP methods is motivated by an observation about the

solutions of PDEs. Indeed, the exact solutions of many important PDEs

Ye = f(tayay:caywxw--)a (113)
satisfy the monotonicity property
ly( + At < [ly@), (1.1.4)

where ||-]| is a norm, semi-norm, or, more generally, any convex functional. Therefore,
when solving system (1.1.1) numerically, it is natural to require that the numerical

solutions also reflect the qualitative property of the exact solution, that is,
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where y, is a numerical approximation to y(to + nAt).

In the context of scalar one-dimensional hyperbolic conservation laws, the total
variation seminorm of the numerical solutions satisfies the monotonicity property
(1.1.5) (see [14]).

Unlike linear stability, nonlinear stability is sometimes difficult to examine. Many
attempts have been tried to find a convenient high-order spatial discretization so
that when coupled with the forward Euler method (FE) time stepping method, one
achieves the expected nonlinear stability when numerically solving hyperbolic con-
servation laws (see, for example, [14, 43, 58, 3, 32]). On the other hand, high-order
time discretizations also have important effects, namely, suitable spatial discretiza-
tions may change the nonlinear stability property when coupled with linearly stable
high-order time discretizations.

Therefore, it is necessary and useful to develop high-order time discretizations
such that when coupled with spatial discretization, they will ensure (1.1.5) is satisfied
by the same spatial discretization coupled with the FE method.

In our research, the semi-discretization is assumed to be designed such that
the solution of the resulting ODE system (1.1.2) satisfies a monotonicity property
analogous to (1.1.4) under the forward Euler method (FE), that is,

[yn 4 ALf (Eny )] < Nlyml; (1.1.6)

for all 0 < At < Atpg and all y,, where Atpg is a maximal step size for which (1.1.6)
holds, and || - || is a given convex functional. Under this assumption, we are now
interested in higher-order, explicit, HB methods, a class of multistep and multistage

numerical methods which preserve the monotonicity property

< ; < <
||yn+1|| = oggf(q ||yn—]||v 0< At = CAtFE? (1'1°7)

when they are coupled with the spatial semi-discretization. Here k is a positive integer
representing the number of previous steps used to compute the numerical solution at

the next step.
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A multistage (and/or multistep) method is said to be SSP if it satisfies the
monotonicity property (1.1.7) whenever the FE condition (1.1.6) is fulfilled (for one-
step methods such as RK methods, see [10]). The number ¢ in (1.1.7), referred to
as the SSP coefficient, depends only on the numerical integration method. In the
literature, ¢ has been called the CFL coefficient. However, SSP coefficient is a more
suitable term because the CFL condition is derived from the ratio between the time
step and the spatial grid size, while the SSP coefficient comes from the ratio between
the SSP time step and the strongly stable FE time step. Great effort has been devoted
to search for numerical methods with largest SSP coefficients ¢ among many different
classes of methods (see [47], [9], [10] and [17]).

All the HB methods in our present work involve HB interpolation polynomials.
Moreover, these methods are all SSP because they can be decomposed in terms of SSP
FE methods by convexity and they use an extension of the Shu—Osher representation,
thus they maintain the monotonicity property, while having high-order accuracy in

time, perhaps under a modified restriction

A typical numerical example given by Gottlieb and Shu [11], shows the necessity
of using SSP methods. In this example, the test problem is inviscid Burgers’ equation

with Riemann initial data:

1, x <0,

—u(x,t) + g F u(:c,t)ﬂ =0, u(x,0)= (1.1.9)
Ox |2
—-0.5, z>0.

This problem is discretized first by using the minmod limiter based on Monotone
Upstream-centered Schemes for Conservation Law (MUSCL). After spatial discretiza-
tion, two 2nd-order RK methods are applied, (a) the SSP 2nd-order RK,

ut) = u" + At L(u™)

L) %um) n % At L)
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Figure 1.1: Solution after 400 time steps and 50 points in space with SSP
RK method, taken from [11]

and (b) the non-SSP 2nd-order RK,

ut = u" — 20At L(u")

41 1
wm ) = oM 4 0 AtL(u™) — 0 AtL(u®)

where L(.) approximates the spatial derivatives in (1.1.9).

From Figs. 1.1 and 1.2, we see clearly that the SSP result has no overshoot, but
the non-SSP result has an overshoot. Therefore, in this case, it is safer to use SSP
methods because they help to reduce the oscillatory and overshoot at discontinuous
points. There are more examples ([20], [22], [9] for details) to compare the SSP
methods and non-SSP methods and to demonstrate the safety of using SSP methods,
especially for solving hyperbolic PDEs.

1.1.2 Some developments of SSP methods

We briefly review the development of SSP methods. After Ami Harten suggested
TVD [14] in 1983, SSP methods were first developed by Shu [50] and then Shu and
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Figure 1.2: Solution after 528 time steps and 50 points in space with non-SSP
RK method, taken from [11]

Osher [53]. In [50] and [53], the relevant norm was the total variation norm. The
forward Euler time-discretization used in the method of lines was assumed to be TVD
(total variation diminishing); therefore, the class was termed TVD time discretization
methods. The term “strong stability preserving” was first used in [12] by Gottlieb,
Shu and Tadmor and it is more suitable because these methods preserve strong sta-
bility in the same norm. Moreover, in [50], Shu and Osher constructed a series of
second- to fifth-order SSP RK methods. Shu [50] found a class of first-order SSP RK
methods with very large SSP coefficients, as well as a class of high-order SSP linear
multistep methods. Later, Gottlieb and Shu [11] derived optimal s-stage SSP RK
methods of order s for s = 2,3, and proved that, for s = 4, there is no such SSP
RK method of order 4 with nonnegative coefficients. In this paper, they also studied
explicit SSP multistep methods and implicit SSP RK methods. Spiteri and Ruuth
[56, 57] studied optimal s-stage SSP RK methods of order p with s > p for p < 4.
They proved the nonexistence of fifth-order SSP RK methods with nonnegative co-
efficients [46] and constructed some fifth-order methods of seven to nine stages with

downwind-biased spatial discretization [47]. A 10-stage method of order 5 was given
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in [44]. Hundsdorfer, Ruuth and Spiteri [18] proved that the implicit Euler method
can unconditionally preserve the strong stability of the FE method (see also [15]) and
studied multistep methods with specific starting procedures.

Furthermore, some SSP methods for special purposes have also been investigated.
For example, low storage RK methods were constructed in [11, 12, 44, 47, 56]. SSP
methods for constant-coefficient linear systems were studied in [8, 12]. For a descrip-
tion of the state-of-the-art, we refer the reader to the review papers by Gottlieb, Shu
and Tadmor [12], Shu [51], Gottlieb [7], and Gottlieb, Ketcheson and Shu [9].

Previous studies have investigated optimally contractive one-step, multistage
methods [24, 59, 8] and one-stage, multistep methods [28, 29]. Several authors such
as Spijker, Higueras and Ketcheson studied the equivalence between SSP coefficient
and the radius of absolute monotonicity for general linear methods (see [55, 16, 21]
for further details). Ferracina and Spijker [5, 6] and Higueras [15, 16] in their research
established a connection between SSP and contractivity studies. These concepts have
been developed independently (see, e.g., [25, 54, 28]). Therefore, some optimal SSP
and optimal contractive methods agree. The SSP coefficient is also related to the ra-
dius of absolute monotonicity. This helps develop new optimal SSP methods [20, 22].
Ketcheson [21] surveyed the threshold factors for linear autonomous equations and
also presented optimal explicit and implicit SSP linear multistep methods. Huang
[17] explored hybrid methods (HM) based on linear multistep methods.

Spijker extended the theory of monotonicity to a larger class of general linear
methods [55], which evaluate the next step by using input values at multiple steps

and multiple stages.

1.2 Outline

This thesis includes six chapters in which Chapter 1 gives the general view of SSP

methods in the literature and motivation to the study of this subject. The remainder
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of the thesis is organized as follows:

Chapter 2 can be divided into two parts. The first part deals with the general
theory of SSP HB methods for hyperbolic conservation laws including the formulae
and the order conditions of our methods. Moreover, it presents the transformation
between the Butcher and Shu—Osher forms as well as canonical Shu—Osher form. All
the SSP coefficients of HB methods obtained from combining k-step methods of order
(p — 3) and RK4 are demonstrated in the second part, Section 2.2 of this chapter.
Examples are found in chapter 4.

Chapter 3 presents all the SSP coefficients of optimal HB methods obtained when
combining k-step methods of order (p —4) and RK5 and compares our methods with
other methods and our methods themselves obtained from RK methods of different
orders. An example is found in chapter 5.

Chapter 4 shows the numerical results of some typical SSP HB methods such
as (a) 4-stage optimal, noncanonical SSP HB methods, (b) optimal, noncanonical
SSP HB methods of order 4 and (c) 8-stage optimal, canonical SSP HB methods,
when coupled with different spatial discretizations such as difference quotient and
WENO5 applied to Burgers’ equation and linear advection equation. These methods
are considered as remarkable examples for chapter 3.

As an example for Chapter 3, in Chapter 5, 8-stage optimal, explicit, canonical
SSP HB methods obtained from k-step methods and RK method of order 5 are applied
to Burgers’ equation to obtain the largest effective CFL numbers and are compared
to other known methods.

The final chapter, Chapter 6, presents the conclusions and future work.

1.3 Contributions

The contribution of this thesis is presented in this section. We believe that these

results are new and hope that they are remarkable contributions to the SSP the-
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ory.

The principal contribution is the construction of new, explicit, optimal SSP

Hermite—Birkhoff methods (here in our research HB(k, s, p) method with the largest

SSP coefficients obtained by fmincon in the MATLAB Optimization Toolbox, and

with nonnegative coefficients is regarded as the optimal method), as a class of general

linear methods, with nonnegative coefficients and good SSP coefficients. Moreover,

we show numerically the fairly good efficiency gain of the new methods over other

well-known methods. In particular:

(1)

Develop the SSP theory for new HB methods. Indeed, we extend the noncanon-
ical and canonical Shu—-Osher forms as well as the vector form of Runge-Kutta
methods for HB methods (Section 2.1). Based on the optimization problems
(Subsection 2.1.4 and 2.1.8), we achieve the formulae of some new optimal HB
methods from RK4 or from RK?5 of specific stage or specific order. These results
are presented in [38, 35, 41] for noncanonical form and [40, 42] for canonical

form.

Find good SSP coefficients from constructing optimal s-stage SSP HB methods
of order p, for s =4,5,...,10and p = 4,5, ...,12, by combining k-step methods
of order (p — 3) and RK4 (Section 2.2) or k-step methods of order (p — 4) and
RK5 (Section 3.2). These SSP coefficients, which have not been investigated
previously, are really good when compared to other methods. For example,
HB(2,8,5), based on RK4, is 91% better than RK(8,5). Furthermore, they
give extremely important results on the existence of SSP methods of order
p > 9 with nonnegative coefficients and good SSP coefficients. The effective
SSP coefficients obtained from these families show that HB methods from RK5
are better than HB methods from RK4.

Show fairly good numerical efficiency of these newly obtained methods over
other known methods and the suitable combinations of our new methods with

some spatial discretizations methods through the largest effective CFL numbers
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and their percentage efficiency gains. For instance, we combine (a) 4-stage,
noncanonical HB methods (RK4) of order p with difference quotient [38], (b)
s-stage, noncanonical HB methods (RK4) of order 4 with WENO5 [35], (c)
8-stage, canonical HB methods (RK4) of order p with WENOS5, (d) 8-stage,
canonical HB methods (RK5) of order p with WENOS5.



Chapter 2

SSP s-Stage HB Methods Based on
Combining k-Step with RK4
Methods

2.1 SSP Hermite—Birkhoff methods

2.1.1 General HB formulation and notation

Throughout this work, the following notation will be used:

Notation 2.1.1

e k denotes the number of steps of a given method,

s denotes the number of stages of a given method per time step,

p denotes the order of a given method,

HB(k,s,p) denotes k-step, s-stage SSP Hermite—Birkhoff methods of order p,

LM(k, p)denotes linear multistep methods,

12
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GL(k,p) denotes k-step, 4-stage general linear methods of order p,

HM(k,p) denotes k-step SSP hybrid methods of order p,

RK(s,p) denotes s-stage SSP Runge—Kutta methods of order p,

TSRK(s,p): 2-step, s-stage Runge—Kutta methods of order p.

All the methods considered in this work are SSP, so the denominations “SSP”

will generally be omitted in what follows.

Notation 2.1.2

e The abscissa vector o = [c1,ca,¢3,...,¢5]7, 0 < ¢; < 1, defines the off-step

points t, + ¢;At, 5 =1,2,...,s. In all cases ¢; =0 and ¢ =1 by convention.

o At each off-step point, let F; == f(t,+c;At,Y;) be the jth-stage derivative where
Y; is the jth-stage value and set Y1 = y,,.

ool *  CORRECTIONS FOLLOWED REPQRT Stttk

Definition 2.1.3 An HB(k,s,p) method to perform integration from t, to t,i1 is
defined by the following s formulae:
HB polynomials of degree (2k + i — 3) are used as predictors to obtain the stage

values Y;,

k—1 i—1 k—1
Y, = UB,iYn + Z AB,ijynfj + At {Z &iij + Z BB,ijfnj] ) 1=2,3,...,8.
j=1 j=1 j=1
(2.1.1)
An HB polynomial of degree (2k + s — 2) is used as an integration formula to

obtain y,.1 to order p,

Yn+1 = UBs+1¥n T Z Aps+1,jYn—j + AL Z bjF; + Z BB,s+1,jfn—j:| . (21.2)

k—1 |: S k—1
J=1 J=1 J=1
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Here vp;, Ap,j, Bp,j, aij and b; fori =2,3,....,s+1and j =1,2,...,k —1 are
the constant coefficients that we can construct to obtain a good approximation, y,.1,

to the solution y(tn41) = y(t, + At).

The subscript B refers to the Butcher form, as opposed to the subscript SO and

(SO, 1), used later for Shu—Osher form and canonical Shu—-Osher form, respectively.

2.1.2 Construction of the order conditions

For the construction of the order conditions of s-stage HB(k, s, p), we denote:

k—1 . k—1 . .
. (—0)7 (=)t 1=2,3,...,8,
Bi(j) = ZAB’MT +ZBB,M m, (2.1.3)
= | j=1.2.p,

which comes from the backsteps of the methods.

Forcing an expansion of the numerical solution produced by formulae (2.1.1)—
(2.1.2) to agree with a Taylor expansion of the true solution, we obtain multistep and
RK type order conditions that must be satisfied by HB(k, s, p) methods.

First, we need to satisfy the multistep-type order conditions:
k—1
vpit+ Y Api=1, i=23,...5+1, (2.1.4)
j=1

which are obtained when applying Taylor expansion (2.1.1)—(2.1.2) up to O(At).

Second, to obtain HB methods of order p, we impose the following (p — 3) sim-

plifying assumptions on the abscissa vector o = [c1, ¢o, 3, . . . ,cS]T:
izl . 1 1=2,3,...,5,
Zaijcj +m!B;(m+1) = eI (2.1.5)
j=1 m=0,1,...,p—4.

The set of equations (2.1.5) is derived from the Taylor expansions of each stage
Y; up to order (p—3). These assumptions help to reduce the large number of RK-type
order conditions (see [36], [37]).
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Finally, matching Taylor expansions of the exact solution and numerical solution
(2.1.2) up to order p and using the set of simplifying assumptions (2.1.5) to reduce
the order conditions, we obtain five sets of equations to be solved for order p, and

these order conditions are analogous to the set of order conditions of RK of order 4:

S . 1
;bici +m!B(m+1):m—H, m=0,1,...,p—1, (2.1.6)

s i—1 cp73
Zbi [Zaij M + Bi(p — 2)} +B(p—1)= TSk (2.1.7)

s s 1—1 Cp73
S Yy g + Bl - 2]+ B) — (2.18)

p!’

S i—1 Cp72
2_b [ZaijerBi(p—l)} +B(p) Z%, (2.1.9)

s 1—1 7—1 cz_g 1
; b, [; i L; Gk =3 T Bj(p - 2)] + Bi(p — 1)} + B(p) = o (2.1.10)

where the backstep parts, B(j), are defined by

N~ (=) (=i~
B(]) :ZAB’S+1’iT+ZBB’S+1’iF1)l’ J= 1a"'7p' (2'1'11)
i=1 ’ i=1 ’

These order conditions are simply RK order conditions with backstep parts B;(-) and
B(-). The HB(k,s,p) methods with order conditions (2.1.4)-(2.1.10) are what we
call HB(k, s, p) based on s-stage RK4 or HB(k, s, p) obtained from combining k-step
methods of order (p — 3) with s-stage RK4.

HB(k, s, p) based on s-stage RK5 or HB(k, s, p) obtained from combining k-step
methods of order (p — 4) with s-stage RK5 will be considered in the next chapter,
Chapter 3.
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2.1.3 A Shu—Osher form of s-stage HB methods for deriving

the SSP property

Now we extend the Shu—Osher representation to our methods so that we can rewrite
our s-stage HB(k, s, p) methods in formulae (2.1.1)—(2.1.2) as convex combinations
of FE method [53] to show that they will preserve the monotonicity property (1.1.7).
The following procedure presents how we can transform HB(k,s,p) formulae into
Shu-Osher form (see also in [41]).

Firstly, let

1—1 S
Ay Ar1e >0, Y Ne=1, i=34...s and > Ap,=1 (2112
=1

(=1

Then, formulae (2.1.1) and (2.1.2) become

- k-1 i—1 k-1
Y; = lz )\i£:| VBYn + Y Apijyn_j + At [Z a;;Fj+ Y Bp fn_j] C i=34,.. ..
(=1 j=1 = =
(2.1.13)
& k1 s k-1
et {Z )\SH’Z} VBl + D Ap Yoy + At {Z biF;+ ) BB,s—i—Ljfn—j} -
=1 = s —
(2.1.14)

Secondly, we express the term y,, in formulae (2.1.1) as a function of Y;,

k—1 i—1 k—1
1
R L SLTISENY) SULES o

i=2,3,...,s (2.1.15)

To avoid confusion, we replace the index ¢ by m in formulae (2.1.15) to obtain

k-1 m—1 k=1
1
T R AT S PRI ) SRS o WA |

m=2,3,...,s (2.1.16)
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Thirdly, fori = 3,4,...,sand £ = 1,2,...,i—1, we substitute (2.1.16) into the terms
AieVBiYn in (2.1.13) with m = ¢. Similarly, we replace y,, in the terms Ag11 VB s+1Yn

in (2.1.14) by (2.1.16) with m = £. If we set

a;; = NijUB,i/VB,;, j=2,3,...,i—1, i=34,...,85+1, (2.1.17)
Apio = vB,, i=3,4,...,8,s5+1, (2.1.18)
Bp.jo = au, i=2,3.. s (2.1.19)

Bp o110 = b1, (2.1.20)

after some calculations, formulae (2.1.1) with ¢ = 2, (2.1.13) and (2.1.14) become:

i—1

k—1
j=1 j=1
Ynt1 = Yoq1,
(2.1.21)
where the coefficients are
i—1
Ay =Apy =Y auApe, j=0,1,... k=1 i=3..ss+1, (2122
(=2
Ag; = Ap o j=1,...,k—1, (2.1.23)
a1 :Aio, i:3,...,8,8+1, (2124)
Q21 = VB2, (2.1.25)
i1
Bij=Bpi— Y uBpy, j=0,1,... k=1 i=3..ss+1, (21.26)
=2
By; = Bpj j=1,...,k—1, (2.1.27)
i—1
Bij=ai; — Y ayay, j=2,3,...i—1, i=3/4,...,s, (2.1.28)
l=j+1
61‘1 :Bi07 i:3,...,8,8+1, (2129)

Pa1 = asn, (2.1.30)
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5s+1,j = bj - Z Qsy10G05,  J=2,3,...,8. (2~1~31)

(=j+1

Thus, the form (2.1.21) can be rewritten as:

k-1 i1
135 ﬁ%’
Y = [ E Ay (yn—j + AtA_;fn—j>:| + {5 i <Y} + At OTZE)}’
j=1 ‘ =1 ‘

(2.1.32)
1=2,3,...,s+1,

Yn+1 = Ys+1-

Since methods with negative coefficients will require additional spatial discretiza-
tion (see [12]), we assume that all the coefficients in the Shu-Osher form are nonneg-
ative.

From the condition (2.1.4), we have:
k—1 i—1
ZAij+Zaij:1, i=2,3,...,5+1, (2.1.33)
j=1 j=1

which is a so-called consistency condition.
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In fact, for e = 2,3,..., s+ 1, we have:
k—1 i—1 k—1 i—1
ZAU + Zaij = ZA” +Oéi1 +Zaij
j=1 j=1 j=1 j=2
k—1 i—1
j=1 J=2
k—1 i—1
= Z Aij + Z Qi
— Z [AB i Z i Ap gj] + Z v (by (2.1.22))

11—

1 k-1 i1
= Z AB.ij Z Qi [Z AB,Kj:| + Z Qi
7=0 J=2

1
—ZABﬁvBl Zaw{ZABe]+vBl]+Zam (by (2.1.18))

=1- Z p + Z g = 1. (by (2.1.4))
=2 Jj=2

The form (2.1.21) is the generalization to HB(k, s, p) methods of the Shu—Osher
form introduced by Shu and Osher in [53].

Clearly, the HB(k, s, p) methods can be decomposed into a combination of FE
methods with new step sizes. Indeed, in (2.1.32) for ¢ = 2,3,...,s,s + 1, the step

sizes are if? At, j =1,...,k—1, and %At, j=1,2,...,i— 1, for the first and
1] 1]
second bracketed terms, respectively.

Thus, we can conclude:

Theorem 2.1.4 If f satisfies the forward Euler condition (1.1.6), then the k-step,
s-stage HB(k, s,p) methods (2.1.32) preserve the monotonicity property (1.1.7), that

18, the method is SSP under the restriction

At < c(Aij, Bij, aij, Bij) Ay,
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where the feasible SSP coefficient c(A;j, Bij, cuj, Bij) is the minimum of the following

quotients:

_ 1rgink 1{3“}, 1=2,3,...,5+ 1,
=12, e iy

. Qjj .
~ min {—J}, 1=2,3,...,5+1,
j=1,2,...i—1 5”-

with the convention that a/0 = +oo and under the assumption that all coefficients of

(2.1.34)

(2.1.32) are nonnegative.

This result is a straightforward extension of the result presented in [12, 17] and

the idea for the proof is in [50].

2.1.4 Formulation of the optimization problem to obtain a

non-canonical optimal HB(k,s,p)

We now turn to the task of finding optimal HB(k, s, p) schemes. To start, we search for
an optimal s-stage SSP HB(k, s, p) scheme by maximizing its feasible SSP coefficients
according to Theorem 2.1.4. This means we look for the global maximum of the
nonlinear programming problem:
max  c(A;;, Bii, o, Bii), 2.1.35
A, B (A, Bij, g, Bis) ( )

where all the numbers in all pairs

{Aij7Bij}7 i:2737"'73+17 jzlv"'7k_17

{Oéw’,ﬂm‘}, i:273,...,8+1, j:1,2,...,i—1,

are nonnegative. Note that if the coefficients in a pair are zero, it is not included in the
minimization process. Here the obtained value maxy,; p,; a;;.8;, ¢(Aij, Bij, auj, Bij) =
c(HB(k,s,p)) is the SSP coefficient of HB(k,s,p).

However, as in [56], Spiteri and Ruuth mentioned that there are two factors con-

tributing to the poor performance of optimization problems. Firstly, the objective
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function (2.1.35) is nonsmooth and hence it is difficult to obtain numerically reli-
able derivative estimations with an optimization method using gradient information.
Another trouble is that the min{-} function is not sensitive to its arguments. Fortu-
nately, using a dummy variable z to reformulate the nonlinear programming problem

may improve the performance of the optimization routine

max 2z, (2.1.36)
Aij,Bij,aij,Bij
such that z satisfies the inequalities
Aij_zBijZ()a i:2737"'73+1 j:1727"'7k_17
(2.1.37)
az]_zﬁljzoa i:2a37"'73+1 j:172""7k_17

together with the conditions

e all the coefficients of (2.1.32) are nonnegative;

e the convex combinations constraints (2.1.12);

e the simplifying assumptions (2.1.4) and (2.1.5) for HB(k, s, p);
e the order conditions (2.1.6)—(2.1.10) for HB(k, s, p);

e the conditions on the abscissae ¢;: ¢; =0,0<¢; <1,1=2,3,...,8.

Some HB methods under noncanonical Shu-Osher forms, presented in Chapter

4, are remarkable illustrations for this optimization problem.

2.1.5 HB(k,s,p) in Butcher and Shu—Osher modified forms

By setting wg; = an, 1 = 2,3,...,s, and wp 41 = by in (2.1.1)—(2.1.2), we have the
HB(k, s, p) modified Butcher form:

k-1 i1 k-1
Y, = vp,Yn + Z Ap ijyn—j + At |:wB,ifn + Z aij Iy + Z BB,ijfn—j:| )

Jj=1 Jj=2 J=1

i=2,3,...,s (2.1.398)
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k—1 k—1
Yn+1 _UBs+1yn+ZABs+ljyn -7 +At|:wBs+1fn+Zb F +ZBBs+1]fn ]17
Jj=1 Jj=2 j=1
(2.1.39)

As done in Subsection 2.1.3, the Butcher form (2.1.1)—(2.1.2) or the modified
Butcher form (2.1.38)—(2.1.39) can be written in the Shu—Osher form (2.1.32).

Now, if we let v; = ay; and w; = f;1, 1= 2,3,...,s+ 1, formulae (2.1.21) become
the HB(k, s, p) modified Shu—-Osher form, which is a generalization of the modified
Shu-Osher form for RK methods (see [53, 10]):

k—1
j=1

i—1

+Z|:041]Y7+At61]1:}:|, ’i:2,3,...,8—|—1,

Jj=2

(2.1.40)

Yn+1 = Ys+1-

We can rearrange (2.1.40) as follows:

k—1
Yi= |:Ui <yn+At %fn>:| |:ZAZJ (?Jn -+ At ”fn J>:|

i—1
[ZmJ(YJrAt/B” )} i=2,3,...,s+1. (2.1.41)

j=2 ij

Now the consistency condition (2.1.33) becomes
vit > Ay+ Y ay=1,  i=23... s+1 (2.1.42)
— —

Clearly, (2.1.41) is the convex combination of forward Euler steps with the step sizes
o At ” At and 5” At whenever v;, w;, A;j, Bij, oz, Bij > 0.

ThlS 1mmed1ately gives the following result:

Theorem 2.1.5 If f satisfies the forward Euler condition (1.1.6), then the k-step,

s-stage HB(k, s, p) methods (2.1.41) satisfy the monotonicity property

lynsal| < | max lyn|
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provided
At < c(Aij, Bij, 0ij, Bij, vi, w;) Atpg,

where the feasible SSP coefficient c(A;j, Byj, cij, Bij, vi, w;) is the minimum of the fol-

A
min {BJ}, 1=2,3,...,s+1,

lowing numbers:

§=1,2,..,k—1 ij
: Qij .
min — 5, 1=3,4,...,5s+1, (2.1.43)
§=2.3,i=1 | By;
U =923, 541,
w;

with the convention that a/0 = +o00 and under the assumption that all coefficients of

(2.1.41) are nonnegative.

Gottlieb, Ketcheson and Shu presented a more compact notation as well as the
canonical Shu—Osher form for RK methods (See more in Sections 3.1-3.4 in [10] for
details). Following these results, in our work, we extended the canonical Shu-Osher
form for our HB(k, s, p) methods. This generalization will be described in the next
three subsections. Like optimal explicit SSP Runge-Kutta methods [20], the new
sparse canonical Shu-Osher forms of HB methods might allow for reduced-storage

implementation.

2.1.6 Butcher form in compact vector notation
A. Vector notation

In this part, we define the following vectors and matrices, which are very helpful to

represent an HB method in Shu-Osher form. In particular, we set v, w € R¥":
v =1[0,vs,03,...,0511]", w = [0, wy, W3, ..., Wey1]",

and strictly lower triangular matrices o, 8 € REHDX(6+D) and rectangular matrices

ASO c R(s-i—l)x(k—l)’ BSO c R(s—i—l)x(k—l)7 Y,F c R(s—&—l)xN, Yoo € R(k—l)xN and
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.fback S R(k_l)XN:

Q5 1=2,3, >S+17 ]:1727 aZ_la
(o) =
0 otherwise,
\
(
Bij 1=2,3,....,s+1, 7=12...,i—1,
(B)ij =
0 otherwise,
\
(
Ajj i=2,3,....,s+1, 57=12...k—1,
(Aso)ij =
0 otherwise,
\
(
B;; 1=2,3,...,s+1, 7=12,...,k—1,
(Bso)ij =
0 otherwise,

\

where the numbers «;;, 5, A;j, B;; come from equation (2.1.21). Moreover,
Y =[0,Ys..., Y], F=[0,F,... Fyl,
T _ T
Yvack = [yn—la Yn—2, - - - 7yn—(/€—1)] ) fback - [fn—b fn—2; s 7fn—(k’—1)] )

with the following N-vectors: Y, Fj for j = 1,2,...,s+ 1, y;, f; for j = n — (k —
1)7 N le = Yn, Fl - fna YS+1 = Yn+1 and Fs+1 - fn+1-

Therefore, the modified Shu-Osher form of HB formulae can be rewritten com-

pactly:
Y = ’Uyz: +aY + Asoyback + At (wf;zr + /BF + BSOfback) )
(2.1.44)
Yn+1 = }/5—1—1-
Here, consistency (2.1.42) can be rewritten as
v+ aegi1 + Aso€pack = €441, (2.1.45)

where the (s + 1)- and (k — 1)-vectors ey and ep,e are

€1 =10,1,1,..., 1JT e REFV epae = [1,1,...,1]7 e RED), (2.1.46)
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respectively. Note that, by setting the first row of matrix Y and the first row of
matrix F' equal zero, respectively, a;; and S, @ = 2,3,...,5 + 1, are not used in
formulae (2.1.44) and the coefficients of Y} = y,, and F} = f,, are then replaced by v;
and w;, 1 =2,3,...,s+ 1.

B. Butcher form

At first glance, we can see that if @ = 0, then the Shu—Osher form (2.1.44) becomes,

Y = vy + AsoYpaa + At (wf) + BF + Bsofraa) »
(2.1.47)

Yn+1 = Ys+1,

which is the Butcher form. So, to distinguish the Butcher form from the Shu—Osher
form, the elements v, w, Aso, Bso, B in (2.1.47) are replaced by vg, wg, Agp, Bg,

B, respectively, and hence the Butcher form (2.1.47) can be rewritten as

Y = vpy, + Apypaa + At (waf, + BeF + Brfia) . (2.1.48)

Yn+1 = Ys+h

where the consistency condition (2.1.45) reduces to
VB + ABeback = €511, (2149)

and eg, 1 and ey, are defined in (2.1.46).
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In fact, the form (2.1.48) is the Butcher form (2.1.1) and (2.1.2) with

vg = [0,0B2,UB3, -, VBs11] (2.1.50)
[ 0 0 0 |
A2 Ap22 - A2k
Ap = AB,3,1 AB,3,2 s AB,3,k71 ) (2-1-51)
| Apsi11 ABsti2 0 ABsiik-1 ]
wp = [0, a9, a1, - - ., as1,b1]", (2.1.52)
[0 0 0 0 0 0]
a; 0 0 0 0 0
a1 azxp 0 0 0 0
Be=| an ap as O 0 01, (2.1.53)
Us1 Gs2 Gs3 - Ass—1 0 0
I by by b3 -+ bs_1 by 0_
[ 0 0 0 ]
Bpa Bpa2 -+ Bpak-1
By = Bpsi  Bpsza -+ DBpar-1 |- (2.1.54)
i Bpst11 Bpst12 ' Bpstik-1 |

Our task now is to find the relationship between the Shu—Osher coefficients and
the Butcher coefficients.

Firstly, solving (2.1.44) for Y, we have

Y = (I - a)_l ’Uyz; + (I - a>_1 Asoyback

+AL[(IT-a) ' wff + (I -a) ' BF+ (I —a) ' Bsofpau] - (2-1.55)
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Secondly, comparing (2.1.48) with (2.1.55), we obtain the following relations

between the generalized Shu—Osher coefficients and the Butcher coefficients,

vg=T—-a) v, wg=T—-a) 'w, Ag=I-a) " Asp, (2.1.56)
By=(I—-a)"'B, Bp=(I-a) Bso. (2.1.57)

Remark 2.1.6
o [f the stepnumber k = 1, then (2.1.48) becomes

Y =wvpy, + At (wsf! + BsF),
(2.1.58)
Yn+1 = Ys+1,

that is the Butcher form of RK methods.

o The process of obtaining (2.1.55) is always valid since (I — o) is non-singular.

Indeed, this matriz is always invertible because, by definition, o is strictly lower

triangular.

2.1.7 Canonical Shu—Osher form of s-stage HB methods for
deriving the SSP property

It is useful to find the SSP coefficient of an HB method under a particular Shu-—

Q4 .. .
2 for every 1,7, ¢ =

Osher form of the matrices a, B by assuming the ratio r =
2,3,4,...,s+1and j=1,2,3,...,¢— 1 such that 3;; # 0.

First of all, denote the coefficient matrices of this special form by a., 3,. Thus,

]

o, =10,. (2.1.59)

Then substituting (2.1.59) into (2.1.57), we can solve for 3, in terms of By and 7. In
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fact,

(I =7B,)"" B, = Be,
B, = B —18,Ps,
B, (I +1Bg) = Bg.

Since I + rBy is invertible, we obtain
B, =PBs (I + TﬁB)il (2.1.60)
Next by (2.1.59) and (2.1.60), we have
o, =10, =rBg (I +rBs) . (2.1.61)
Remark 2.1.7

e The matriz (I +rBg) is invertible because the matriz By is strictly lower tri-
angular by (2.1.53), which implies that the determinant of (I +rBp) is always

equal to one.

o We always have (I + TBB)fl =TI — «,. Actually,

(I+71Bp) " =[I+1Bp) —rBsl (I +7185) "
=I—rBy(I+rBy)"
=I—-a, (by (2.1.61)).

Therefore, from (2.1.56) and (2.1.57), we have:
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and from (2.1.57), (2.1.60) and (2.1.61), B, and o, are also given by:

B,=Bs(I—a,) =I+1Bp) " Bp (2.1.66)
a, =B (I —o)=r(I+1Bp) " Bp, (2.1.67)

e  CORRECTION FOLLOWED REPORT Stttk

Definition 2.1.8 The canonical Shu—Osher form of the HB method is defined as
follow:

Y = (’UTyZ; + Atw?’fg) + (aTY + AtIBTF> + (ASO,Tyback + AtBSO,beack) (2168)

where all the coefficients are determined by the relations (2.1.60)—(2.1.65) with the
consistency condition
Uy + 05y + ASO,Teback = €541 (2169)

It is noted that the form (2.1.68) can be also presented in terms of the Butcher
coefficients by using (2.1.62)—(2.1.67),

Y = (I + TﬁB)il [UBZ/Z + At/l'UBfg1 + /6B (TY + AtF) + (AByback + AtBbeaCk)] .
(2.1.70)

with the consistency condition
(I+7Bg) v +r(I+7rBp) " Bpessi + (I +7Bp) " Apepack = €511, (2.1.71)

el CORRECTION FOLLOWED REPORT S icieiotok

Definition 2.1.9 The canonical Shu—Osher form of the HB method (2.1.68) is called

sparse form if matrices o, and B, have few non-zero entries.

The sparsity gives significant advantages such as memory management and com-

putational efficiency.

R N D kbt L R S S L)
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Remark 2.1.10
e [fr =0, then the Butcher form (2.1.48) and the form (2.1.71) are identical.
e The relations (2.1.60)—~(2.1.67) will enable us to transform simply a Butcher
form into a canonical Shu—Osher form and vice versa.

Bij
2,3,...,i— 1, becomes a feasible SSP coefficient of HB(k,s,p). Hence, this ratio r

The ratio r = which is the same for every 4,5, ¢ = 3,4,...,s — 1 and j =

must satisfy two additional sets of conditions:

r< -t i=23,...,s+1,

which is (2.1.73) and (2.1.83). Therefore, the following slight modification of the
result presented in Theorem 2.1.5 holds.

Theorem 2.1.11 If f satisfies the forward Euler condition (1.1.6), then the k-step,

s-stage HB(k, s,p) (2.1.68) satisfy the monotonicity property

< .
lynsall < max gl

provided
At S C(’l)r, w,, &y, ﬂm AS’O,ra BSO,T)AtFE7

where the coefficient c¢(v,, w,, o, B,, Asor, Bsor) is equal to

) P=3,4 s+,
T:{%%7 (2.1.72)
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and less than or equal to:

min (2.1.73)
i=2,3,.s+1 W;
. Ay .
min , 1=2,3,...,8+1, (2.1.74)
§=1,2,...k—1 Bij

with the convention that a/0 = 400, under the assumption that all coefficients of

(2.1.68) are nonnegative.

2.1.8 Formulation of the optimization problem to obtain the
canonical optimal HB(k,s,p)

Similar to Subsection 2.1.4, we would like to optimize HB(k,s,p) and obtain ¢(HB(k,s,p))

in canonical form, so by Theorem 2.1.11, we maximize

max C(Ura W, &y, ﬁr? ASO,T; BSO,’!‘) = C(HB(k757p))-

v, Wr,ar,B,.,A50,r,Bso,r

In the optimization formulation with any feasible initial data, the ratio r becomes

the variable r which satisfies the equations in three variables o;;, r, 5i;,
O[Z‘j—T‘ﬁijZO, i:3,4,...,$+1, j:2,3,...,i—1,

together with the two conditions (2.1.73) which is (2.1.82) and (2.1.73) which is
(2.1.83).

Hence, the problem of optimizing the canonical HB(k, s, p) can be formulated as

c(HB(k,s,p)) = max T, (2.1.75)

vB,ws,05,AB,BB



2.1. SSP Hermite-Birkhoff methods 32

subject to the component-wise inequalities

(I+rBg) v >0 (2.1.76)

(I+7Bg) " wg >0 (2.1.77)

B (I+7B8y)" >0 (2.1.78)

(I+7rBg)" Ap>0 (2.1.79)

(I+7Bg) " B >0 (2.1.80)

By (L+7Bp) " esp1 + (I +78p) " Apepaa < €511, (2.1.81)
(I+rBp)" (—vp +rws) <0, (2.1.82)

(I +7Bg)" (~Ap+rBg) <0, (2.1.83)

together with the set of order conditions (2.1.4)—(2.1.10).

Inequalities (2.1.76)-(2.1.80) ensure the coeflicient v,, w,, o, 3, , Aso,r, Bsor
are nonnegative (by using relations (2.1.61)—(2.1.65)).

Inequalities (2.1.82) and (2.1.83) follow Theorem 2.1.11 to obtain the SSP coef-
ficient from many feasible SSP coefficients.

For the MATLAB optimization toolbox, to avoid trouble, we use inequality (2.1.81)
instead of the consistency condition (2.1.71) (or (2.1.69)). In fact, (2.1.81) guarantees
that (2.1.71) (or (2.1.69)) is always satisfied for all output r because the inputs are
in Butcher forms (2.1.50)-(2.1.54) with vg and Ap always satisfy (2.1.49). Then we

have:

vB + AB€pack = €411,
vp +1Bp€si1 + Apepack = €511 + 1Bpesy,
vp + 78p€si1 + Apepack = (I +108p)es 1,
(I +rBg) 'vs +r(I +7rBp) ' Bpesr1 + (I +1Bp) ' Apepak = €s41.

The matrix (I + r@g) is invertible by Remark 2.1.7 and the last equation above is
(2.1.71). It is to be noted that condition (2.1.78) implies condition (2.1.77).



2.2. Effective SSP coefficients and their percentage efficiency gains 33

Following the optimization problem, in the next section we shall obtain the SSP
coefficients ¢ and the effective coefficients c.g of the canonical Shu—Osher form of

s-stage HB(k,s,p) methods.

2.2 Effective SSP coefficients and their percentage
efficiency gains

Since HB(k,s,p) methods contain many free parameters when k is sufficiently large,
the optimization formulation, implemented by *** fmincon in *** the MATLAB
Optimization Toolbox, was used to search for the methods with largest ¢(HB(k,s,p))
for different values of k. Several authors [56, 57, 10] have successfully used this
technique to find optimal RK methods. In this work, the MATLAB Optimization
Toolbox was used to tolerance 107! on the objective function ¢c(HB(k,s,p)) provided
all the constraints were satisfied to tolerance 1014,

ok NEW SENTENCE*** However, because of the limitation of fmincon func-
tion, it is not guaranteed that the obtained result are global. **¥* END*##tk

Gottlieb [7] pointed out that one looks for high-order SSP methods with ¢ as
large as possible, taking their computational costs and orders into account. The
effective coefficients cqq provide a fair comparison between methods of the same order,
although, in practice, starting methods, storage issues and order reduction may also

be important.

Definition 2.2.1 (See [47]) The effective SSP coefficients of an SSP method M,

ceg(M), is defined by

c(M)
6 ?

where £ 1s the number of function evaluations of method M wused per time step and

c(M) is the SSP coefficient of M.

Ce(M) = (2.2.1)
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For instance, ¢ = s for HB(k,s,p) or RK(s, p) methods and ¢ = 2 for HM(k, p).
By definition, cg(FE) = 1.

Definition 2.2.2 (See [56]) The percentage efficiency gain (PEG) of the effective
SSP coefficients c.p(M2) of method 2 over c.z(M1) of method 1 is evaluated by

Ceﬁ(MQ) — Ceﬁ(Ml)
Ce(M1)

PEG(cg(M2), cog(M1)) = (2.2.2)

In Tables 2.1-2.9, for each stage value s, the row-wise maximum, maxy, cog(HB(k,s,p)),
is listed with an asterisk. The largest c.q for each order p is in boldface. This data is

summarized in Table 2.10 and Fig. 2.9.

Remark 2.2.3 From Tables 2.1-2.9, it is generally seen that:

o For a given k, generally c.g(HB(k,s,p)) first increases with s and then decreases.
*¥HAXFX CORRECTION FOLLOWED THE REPORT ***#**

As s increases, the set of feasible solutions is larger. It means that SSP co-
efficient, c increases with increasing s. However, cqg = <, then it does not
guarantee c.g increases with increasing s.

o For fized stage s, the effective SSP coefficients c.g(HB(k,s,p)) first increase as

the number of steps k increases and then stabilize.

o Empty entries in the tables correspond either to existing methods with smaller

Ceff-

The next subsections 2.2.1-2.2.9 follow Section 5 in [39)].
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2.2.1 Fourth-order methods

Spiteri and Ruuth [56] found a 5-stage SSP RK method of order 4, called RK(5,4),
with ¢(RK(5,4)) = 1.508 and c.g(RK(5,4)) = 0.302. Other fourth-order SSP RK
methods with more stages can be found in [57] and [20]. Gottlieb, Shu and Tadmor

[12] proved that there are no HM(2,4) with nonnegative coefficients. Huang [17] found
k-step HM(k,4) of order 4:

o HM(3,4) with c(HM(3,4)) = 0.494 and coq(HIM(3,4)) = 0.247,
o HM(4,4) with ¢(HM(4,4)) = 0.682 and coq(HM(4,4)) = 0.341,
o HM(5,4) with c(FIM(5,4)) = 0.793 and cor(FIM(5,4)) = 0.396,
e HM(6,4) with ¢(HM(6,4)) = 0.879 and cos(HM(6,4)) = 0.439,
o HM(7,4) with c(HIM(7,4)) = 0.938 and cor(FIM(7,4)) = 0.469.

Recently, Constantinescu and Sandu [4] obtained optimal 2-step general linear
SSP methods of order 4, with certificates of optimality for some of them. Ketcheson,
Gottlieb and Macdonald [23] found 2-step RK (TSRK) methods of order 4 with
nonnegative coefficients (see also [10]). Among these, the 10-stage method has the
best effective SSP coefficient, c.g(TSRK(10,4)) = 0.610.

In our research, we have already found the SSP coefficients of the optimal non-
canonical HB(k, s,4) with stage number s = 4,5,...,10 [35]. Moreover, we numer-
ically obtained optimal canonical HB(k, s,4), s = 4,5,...,12, the cog of which are
listed in Table 2.1.

Remark 2.2.4 From Table 2.1, it is seen that:
(1) HB(3,12,4) has largest c.z( HB(3,12,4)) = 0.656.

(2) All our new methods (except HB(2,4,4) and HB(3,4,4)) have greater c.g than
those of the hybrid methods listed above. Actually, even with only 4 steps,
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Table 2.1: cog(HB(k, s,4)) as function of k and s.

s\k | 2 3 4 5 6 7 | RK(s,4) | TSRK(s,4)
4 10398 | 0461 | 0.483 | 0.495 | 0.503 | *0.508 0.399
5 10472 | 0504 | 0.508 | 0.511 | 0.513 | *0.514 | 0.302 0.472
6 | 0502 | 0511 | 0.514 | *0.515 0.382 0.509
7 10532 0.534 | *0.535 0.474 0.534
8 | 0.561 | 0.562 | *0.563 0.518 0.562
9 | 0.586 | *0.587 0.541 0.536
10 | 0.610 | *0.614 0.600 0.610
11 | 0.634 | *0.637 0.594

12 | 0.653 | 0.656 0.584

HB(4,4,4) has larger c.g than Huang’s best 7-step, HM(7,4), that is, ceg( HB(4,4,4)) =
0.483 > c.g( HM(7,4)) = 0.469.

3) For the same stage number s, cop( HB(k,s,4)) > cep(RK(s,4)) especially when
If i

s s small.

(4) Although c.y(HB(2,5,4)) = ceg( TSRK(s,4)), cey(HB(k, s,4)) > ceg( TSRK(s,4))
for k > 3.

(5) cep(HB(2,5,4)) = ceg( TSRK(s,4)), s = 9, 10.

HB, TSRK and RK methods of order 4, including Ketcheson RK(10,4), are com-
pared in Fig. 2.1 on the basis of maxy cor(HB(k, s,4)) as a function of the number
of stages s. In this figure, it is noted that maxy ceg(HB(k, s,4)) increases slightly
and cer(RK(s,4)) increases dramatically with s < 10. However, when s > 11,
maxy, Cer(HB(K, 5,4)) continues to increase while c.g(RK(s,4)) decreases. At stage
s = 17,8,9, Fig. 2.1 shows the c.s of HB methods and TSRK methods are almost

equal. Moreover, the figure confirms the third statement in Remark 2.2.4.
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Number of stages s
HB(k, s,4) of order 4 o, RK(s,4) of order 4 >
TSRK(s,4) of order 4 O
Figure 2.1: maxy cor(HB(k, s,4)),
cei(RK(s,4)), cer(TSRK(s,4)) as
functions of s.

2.2.2 Fifth-order methods

Eff. SSP coeffs.

4 6 8 1‘0 12
Number of stages s
HB(k, s,5) of order 5 o, RK(s,5) of order 5 >
TSRK(s,5) of order 5 O
Figure 2.2: max;y, cee(HB(k, s,5)),
cei(RK(s,5)), cer(TSRK(s,5)) as
functions of s.

Ruuth and Spiteri [46] proved that there are no fifth-order SSP RK methods with

nonnegative coefficients. In [44, 47], they recently considered fifth-order methods with

negative coefficients,

e RK(7,5) with ¢(RK(7,5)) = 1.1785, cor(RK(7,5)) = 0.168,

e RK(8,5) with ¢(RK(8,5)) = 1.8757, cer(RK(8,5)) = 0.234,

o RK(9,5) with ¢(RK(9,5)) = 2.696, cer(RK(9,5)) = 0.300,

e RK(10,5) with ¢(RK(10,5)) = 3.395, coe(RK(10,5)) = 0.339.

Ruuth and Hundsdorfer [45] pointed out that fifth-order linear multistep (LM) meth-

ods with nonnegative coefficients require at least k = 7 steps with cog(LM(7,5)) =

0.038. In [17], one finds the following HM(k, 5) with nonnegative coefficients:

o HM(4,5) with ¢(HM(4,5)) = 0.371 and coq(HM(4,5)) = 0.185,

e HM(5,5) with ¢(HM(5,5)) = 0.525 and ceg(HM(5,5)) = 0.262,
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Table 2.2: cs(HB(k, s,5)) as function of k and s.

s\k| 2 3 4 5 6 7 | TSRK(s,5)
4 | 0213 | 0.341 | 0.384 | 0.390 | *0.392 | 0.392 |  0.214
5 | 0.328 | 0.364 | 0.400 | *0.405 | 0.405 0.324
6 | 0.385 | *0.404 | 0.404 0.385
7 | 0.418 | *0.426 | 0.426 0.418
8 | 0.447 | 0.447 | 0.447 0.447
0 | *0.438 | 0.438 | 0.438 0.438
10 | *0.425 | 0.425 | 0.425 0.425

o HM(6,5) with ¢(HM(6,5)) = 0.657 and ces(HM(6,5)) = 0.328,
o HM(7,5) with ¢(HM(7,5)) = 0.746 and cog(HM(7,5)) = 0.373.

Two-step RK methods of order 5 with nonnegative coefficients are found in [23].
Their formulae and SSP coefficients are also listed in [10]. Among these, the 8-stage
method has the best cos(TSRK(8,5)) = 0.447.

In our work, optimal canonical HB(k, s, 5) with stage number s = 4,5, ..., 10 are
found and their ¢ are listed in Table 2.2 with the largest c.s(HB(2,8,5)) = 0.447.

The maxy, cer(HB(k, s,5)), for s = 4,5,...,10, TSRK(s,5) for s = 4,5,...,12
and RK(s,5), for s = 7,8,9,10, are plotted in Fig. 2.2. The figure shows that the

new methods have larger effective SSP coefficients when s > 6.

Remark 2.2.5 From Table 2.2, it is observed that:

o Unlike the fourth order, the fifth order methods present an unusual phenomenon:
for all the step numbers, as the number of stages is greater than eight, it is
not possible to obtain larger c.g than the 8-stage method. This phenomenon,
which will happen differently at different orders, will be seen clearly in the next

Subsections.
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e For the same step number k, HB(k,s,5) methods have larger c.y than those
of hybrid methods (HM). Moreover, even with the lowest stage s = 4, our
method is better than the best HM method, that is, c.y(HB(4,4,5)) = 0.384 >
ceg(HM(7,5)) = 0.373.

o With k = 2, although c.z(HB(2,5,5)) are slightly smaller than c.g( TSRK(s,5)),
they are equal when s > 6. However, ask > 2, c.g( HB((k,s,5))) > ceg( TSRK(s,5)).

o Except for HB(2,4,5) and HB(2,5,5), all the HB methods have larger c.g than
that of the best RK method. In fact, ceg(HB(3,4,5)) = 0.341 > c.4(RK(10,5)) =
0.339.

2.2.3 Sixth-order methods

Ketcheson [21] pointed out that LM methods of order 6 with nonnegative coefficients
require at least k& = 10 steps with c.g(LM(10,6)) = 0.052. Moreover, the family of
k-step HM(k,6) with k = 5,6,7 was found in [17]:

o HM(5,6) with ¢(HM(5,6)) = 0.209 and c.g(HM(5,6)) = 0.104,
e HM(6,6) with ¢(HM(6,6)) = 0.362 and coe(HM(6,6)) = 0.181,
o HM(7,6) with ¢(HM(7,6)) = 0.440 and coe(HM(7,6)) = 0.220.

Furthermore, two-step RK methods of order 6 with nonnegative coefficients are
found in [23] (see more in [10]). Among these, the 12-stage method has the best
effective SSP coefficient c.g(TSRK(12,6)) = 0.365.

Optimal canonical HB(k, s,6) were found numerically with stage number s =
4,...,10 in our study. Their c.g are listed in Table 2.3 with largest c.(HB(5,7,6)) =
0.351.

Remark 2.2.6 From Table 2.3, we notice that:
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Table 2.3: cr(HB(k, s,6)) as function of k and s.

s\k | 2 3 4 5 6 7 | TSRK(s, 6)
4 0.179 | 0.272 | 0.316 | 0.330 | *0.339

5 0.272 | 0.327 | 0.342 | 0.344 | *0.345

6 0.323 | 0.336 | 0.345 | *0.349 | 0.349 0.099
7 | 0.182 | 0.341 | 0.349 | 0.351 | 0.351 | 0.351 0.182
8 | 0.240 | 0.328 | 0.336 | 0.339 | *0.341 | 0.341 0.242
9 | 0.285]0.316 | 0.317 | 0.318 | *0.319 | 0.319 0.287
10 | 0.284 | 0.288 | 0.290 | *0.291 | 0.291 0.320

o The phenomenon, which is mentioned in Remark 2.2.5, also happens with sixth

order methods. Yet, c.g falls off when s =7 and s =9 for k > 3 and k = 2,

respectively.

o All HB methods, excluding HB(2,7,6) and HB(3,4,6), have larger c g than those
of the best HM method, HM(7,6), with c.g(HM(7,6)) = 0.220.

o As s =6,7, HB methods have significantly better c.; when compared to TSRK
methods.  For instance, PEG(c.g(HB(3,6,6)),ceg( TSRK(6,6)))

(2.2.2)).

= 226% (by

In Fig. 2.3, maxy, ceg(HB(k, s,6)) and cos(TSRK(s,6)) are plotted as functions of

the number of stages s. It is seen that the new methods generally have larger effective

SSP coefficients, especially when the number of stages of both methods are small.

2.2.4 Seventh-order methods

LM methods of order 7 with nonnegative coefficients require at least k = 12 steps

with cer(LM(12,7)) = 0.018 [21].
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In [17], Huang introduced the 7-step HM(7,7) of order 7 with ¢(HM(7,7)) = 0.234
and cop(HM(7,7)) = 0.117.

Two-step RK methods of order 7 with nonnegative coefficients are found by
Gottlieb, Ketcheson and McDonald ([23], [10]). Among these, the 12-stage method

has the best cog(TSRK(12,7)) = 0.231.
For HB methods, we also obtained the optimal methods of order 7, HB(k,s,7)
with stage number s = 4,5,...,10. Their c.g are listed in Table 2.4 with largest

cef(HB(6,6,7)) = 0.305.
Remark 2.2.7 From Table 2.4, we notice that:

o All HB methods have larger c.g than the HM method HM(7,7) with c.g( HM(7,7)) =
0.117.

o The ceg of all HB methods of order 7 drop-off with increasing s > 6.

e For the same number of stages, the HB methods have better c.g than the TSRK

methods in row-wise comparison.
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Table 2.4: cs(HB(k, s, 7)) as function of k and s.

s\k| 3 4 5 6 7 | TSRK(s, 7)
4 0.141 | 0.219 | 0.256 | *0.287

5 | 0.173 ] 0.239 | 0.282 | 0.293 | *0.296

6 | 0.232]0.290 | 0.301 | 0.305 | 0.305

7 | 02310286 | 0.292 | *0.293 | 0.293

8 | 0.228 | 0.280 | 0.285 | 0.285 | 0.285 0.071
9 |0.209 | 0.262 | *0.277 | 0.277 | 0.277 0.124
10 | 0.191 | 0.240 | 0.255 | *0.260 | 0.260 0.179

In Fig. 2.4, the ceg of HB(£,6,7) and HM(7,7), both of order 7, and HM(k,6) of
order 6 are plotted as functions of the number of steps, k. It is seen that HB(%,6,7)
have larger ce than HM(7,7) and HM(k,6), for k = 5,6,7. Even with a smaller step
number k£ = 3, HB(3,6,7) has larger cos than HM(7,7) and HM(k,6) which require

more steps, namely, k = 5,6, 7.

2.2.5 Eighth-order methods

The necessity for LM methods of order 8 with nonnegative coefficients exists is k > 15
and cos(LM(15,8)) = 0.012 [21].

Two-step RK methods of order 8 with nonnegative coefficients are found in [23].
Among these, the 12-stage method has the best cos(TSRK(12,8)) = 0.078.

The optimal canonical HB(k, s, 8) with stage number s = 4,5, ..., 10 were numer-
ically found in our research. Their c.s are listed in Table 2.5 with largest c.s(HB(8,6,8)) =
0.261.

From Table 2.5, we see that these new methods are better than HM(7,7) even with
the smallest step number k& = 4 and are competitive with TSRK(12,8) with lowest
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Table 2.5: cr(HB(k, s,8)) as function of k and s.

s\k | 4 5 6 7 8
4 0.123 | 0.180 | 0.213 | *0.239
5 | 0.121 | 0.200 | 0.230 | 0.253 | *0.259
6 | 0.169 | 0.239 | 0.256 | 0.258 | 0.261
7 | 0.169 | 0.236 | 0.240 | 0.243 | *0.244
8 |0.192|0.231 | *0.233 | 0.233 | 0.233
9 | 02020210 0211 | *0.212 | 0.212
10 | 0.189 | 0.191 | *0.193 | 0.193 | 0.193

stage number s = 4. For example, c.s(HB(4,5,8)) = 0.121 > cog(HM(7,7)) = 0.117
and cr(HB(5,4,8)) = 0.123 > coq(TSRK(12,8)) = 0.078.

In Fig. 2.5, the ceg of HB(£,6,8), HM(7,7) of order 7 and HM(k,6) of order 6 are
compared as functions of k. It is seen that HB(£,6,8) have larger cos than HM(7,7)
and HM(k,6) for k = 5,6, 7 even though it has larger order than HM.

2.2.6 Ninth-order methods

Although LM methods with nonnegative coefficients require at least k = 18 steps
to obtain order 9, their c.g are not high. Indeed, in [21], Ketcheson presented the
table of c.g of all optimal explicit linear multistep methods. The table shows that
corf(LM(18,9)) = 0.003 and the best one is ceg(LM(50,9)) = 0.261.

However, HB(k, s,9) exist even with only small k£ and s. A family of optimal
HB methods of order 9 was found numerically with stage number s =4,5,...,10 and
their co are listed in Table 2.6 with largest cos(HB(8,6,9)) = 0.228. All ¢ of HB
methods in the table decrease as s > 6, except for HB(6,s,9) that drop-off as s > 7.

Even with only 5 steps, these new methods are competitive with HM(7,7) of
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order 7. For instance, c.s(HB(5,6,9)) = 0.168 > ceg(HM(7,7)) = 0.117.
In Fig. 2.6, it is seen that, for all k£, HB(k,6,9) have larger c.g than HM(7,7).

2.2.7 Tenth-order methods

LM methods of order 10 with nonnegative coefficients require at least £k = 22 steps
with ceg(LM(22,10)) = 0.010 and the largest ceg is cog(LM(50,10)) = 0.218 [21].

For HB methods, the step number required is £ = 6 and we numerically found op-
timal HB(k, s, 10) with stage number s = 4,5,...,10. Their c.q are listed in Table 2.7
with largest c.q(HB(8,6,10)) = 0.185.

Despite low step number k& = 6, we have cg(HB(6,6,10)) = 0.126 > 0.117 =
cef(HM(7,7)), the best method among HM methods.

In Fig. 2.7, the co of HB(k,6,10) of order 10 and HM(7,7) of order 7 are compared
as functions k. It is observed that all HB(k,6,10) have larger cog than HM(7,7).
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Table 2.6: c.s(HB(k,s,9)) as func- Table 2.7:  cs(HB(k,s,10)) as
tion of k and s. function of k£ and s.

s\k| 5 6 7 8 s\k| 6 7 8

4 0.091 | 0.135 | *0.171 4 0.073 | *0.117

5 |0.121 | 0.177 | 0.204 | *0.220 5 | 0.088 | 0.143 | *0.172

6 |0.168 | 0.194 | 0.215 | 0.228 6 | 0.126 | 0.168 | 0.185

7 | 0.162 | 0.196 | 0.207 | *0.215 7 10.131 | 0.171 | *0.182

8 10.153 | 0.191 | 0.206 | *0.210 8 10.141 | 0.170 | *0.176

9 |0.138 | 0.172 | 0.185 | *0.191 9 10.128 | 0.154 | * 0.159

10 | 0.126 | 0.157 | 0.168 | *0.174 10 | 0.117 | 0.140 | *0.144

2.2.8 Eleventh-order methods

In [21], Ketcheson showed that LM methods of order 11 with nonnegative coefficients
need at least k = 26 steps with c.g(LM(26,11)) = 0.012.

The optimal canonical HB(k, s, 11) with stage number s = 4,5, ..., 10 were found
and presented in [40]. Their cog are listed in Table 2.8.

Table 2.8: cg(HB(k,s,11)) as Table 2.9  cg(HB(k,s,12)) as
function of k and s. function of k£ and s.
s\k 6 7 8 s\k 7 8
4 *0.053 5 10.010 | *0.057
5 0.080 | *0.126 6 | 0.035 | *0.091
6 | 0.029 | 0.092 | 0.142 7 | 0.060 | 0.096
7 10.029 | 0.121 | 0.142 8 | 0.055 | *0.091
8 |0.028 | 0.110 | * 0.127 9 | 0.051 | *0.083
9 |0.027 | 0.099 | *0.114 10 | 0.047 | *0.076
10 | 0.025 | 0.091 | *0.104
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Remark 2.2.8 From Table 2.8, we see that:

o The best HB method have larger c.4 than the best HM method, HM(7,7), that
is, cop(HB(8,6,11)) = 0.142 > c.g(HM(7,7)) = 0.117.

o The c. of HB(k,s,11) methods are equal at s = 6 and s = 7 when k = 6 and
k =8, that is, c.y(HB(8,6,11)) = c.s(HB(8,7,11)) = 0.142 and they are both

the largest values.

Figure 2.8 shows that c.g(HB(8,7,11)) > ceg(HB(7,7,11)) > ceg(HM(7,7)) =
0.117.

2.2.9 Twelfth-order methods

In [21], LM methods of order 12 with nonnegative coefficients require at least k& = 30
steps with cer(LM(30,12)) = 0.002.

We numerically found optimal HB(k, s,12) with stage number s = 5,6,...,10
with their formulae and numerical results listed in [42]. Their . are listed in Table 2.9

with largest ceq(HB(8,7,12)) = 0.096.
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Table 2.10: maxy, ceg(HB(k, s,p)) as function of stage number s and order p,
and cos(RK(s,4)) of the s-stage RK(s,4) of order 4.

P\s 4 5 6 7 8 9 10
4 | HB(74,4) | HB(7,54) HB(5,6,4) HB(4,7,4) HB(3,8,4) | HB(3,9,4) | HB(3,10,4)
0.508 0.514 0.515 0.535 0.554 0.587 0.614
5 | HB(64,5) | HB(55,5) HB(3,6,5) HB(3,7,5) | HB(2,8,5) | HB(2,9,5) | HB(2,10,5)
0.392 0.405 0.404 0.426 0.447 0.438 0.425
6 | HB(7,4,6) | HB(7,56) HB(6,6,6) HB(5,7,6) | HB(6,8,6) | HB(6,9,6) | HB(4,10,6)
0.339 0.345 0.349 0.351 0.341 0.319 0.290
7 | HB(74,7) | HB(7,57) | HB(6,6,7) HB(6,7,7) HB(5,8,7) | HB(5,9,7) | HB(6,10,7)
0.287 0.296 0.305 0.293 0.285 0.277 0.260
8 | HB(84,8) | HB(858) | HB(8,6,8) HB(8,7,8) HB(6,8,8) | HB(7,9,8) | HB(6,10,8)
0.239 0.259 0.261 0.244 0.233 0.212 0.193
9 | HB(8,4,9) | HB(859) | HB(8,6,9) HB(8,7,9) HB(8,8,9) | HB(8,9,9) | HB(8,10,9)
0.171 0.220 0.228 0.215 0.210 0.191 0.174
10 | HB(8,4,10) | HB(8,5,10) | HB(8,6,10) | HB(8,7,10) | HB(8,8,10) | HB(8,9,10) | HB(8,10,10)
0.117 0.172 0.185 0.182 0.176 0.159 0.144
11 | HB(8,4,11) | HB(8,5,11) | HB(8,6,11) | HB(8,7,11) | HB(8,8,11) | HB(8,9,11) | HB(8,10,11)
0.053 0.126 0.142 0.142 0.127 0.114 0.104
12 HB(8,5,12) | HB(8,6,12) | HB(8,7,12) | HB(8,8,12) | HB(8,9,12) | HB(8,10,12)
0.057 0.091 0.096 0.091 0.083 0.076

Table 2.10 lists the maxy, cor(HB(k, s, p)) which are the numbers marked with an

asterisk and the boldface numbers in Tables 2.1-2.9.

In Table 2.10, for a given s, cer(HB(k, s,p)) decreases with increasing p because

the number of order conditions increases, which makes the set of feasible solutions of

the optimization problem smaller. Thus, the SSP coefficient decreases, and hence ceg

also declines. In addition, c.g(HB(k, s, p)) of orders p = 6,7,...,12 are among the

highest values when s € [6, 8]. Hence, based on the ceg, it seems that there are only 3

HB families which can have methods up to order 12 with good ceg, namely, the 6-, 7-

and 8-stage HB methods of order 4 to 12, among the most efficient methods on hand.

In Fig. 2.9, maxy, cer(HB(k, s,p)), p=4,5,...,12, is plotted as a function of the

stage number s. We note that, for a given p > 5, maxy, ceg(HB(k, s,p)) first increases
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with s and then decreases, which confirms again the first item in Remark 2.2.3.

Besides, the smallest order HB methods have, the largest c.q they achieve.
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Figure 2.10 plots maxy s ces(HB(k, s,p)) as a function of the order p. We note

that maxy, s cor(HB(K, s,p)) decreases with p.



Chapter 3

SSP s-Stage HB Methods Based on
Combining k-Step with RK5
Methods

In 2002, Ruuth and Spiteri [46] have shown that there is no fifth-order SSP Runge—
Kutta methods with nonnegative coefficients. In our research, we have been able
to construct optimal SSP HB(k, s, p) methods with nonnegative coefficients, which
have order conditions analogous to order conditions of s-stage RK of order 5 for
p =5,6,...,12. In addition, throughout our experiments, it is shown that the SSP
effective coefficient, c.g also depends on the order of RK methods which order con-
ditions of HB methods are analogous to. Specifically, higher order RK methods lead
to larger co for HB(k, s, p). Therefore, we expect to construct HB(k, s, p) with non-
negative coefficients and larger c.q based on RK methods of order 5 than with RK

methods of order 4.

49
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3.1 Order conditions for HB(k, s, p)

To derive the order conditions of s-stage HB(k, s, p) we use the following expressions

obtained from the backsteps of the methods:

j -1 1=2,3,...,5,

+ZBBM

(3.1.1)

ZAB 14

=12 ...,p.

As in Subsection (2.1.2), expanding the numerical solutions produced by formulae
(2.1.1)—(2.1.2) and the exact solution in Taylor series, we have following multistep-

and several RK-type order conditions, respectively:

vpit+ Y Apg =1, i=23.. s+1, (3.1.2)

1 ) e
Zauc +m!Bi(m + 1) = —— "t (3.1.3)
m+1
m=20,1,...,p—5.
However, since we reduce one simplifying assumption in (2.1.5) in the case of
RK4 | the original set of order conditions for HB methods to obtain order p now is

reduced to following equations, which are solved in the case of order p > 5,

ibic?er!B(erl):m;H, m=0,1,...,p—1, (3.1.4)
s i—1 bt

sz‘ [Zaijw‘i‘Bi(p_g)} +Bp-2) = (p—12)!7 (3.1.5)
Zb {Zaijﬁ+3i(p—3)} +B(p—-1)= (p_l i (3.1.6)
Zb@' [Zaijﬁ+3i(p—2)] +Bp-1)= (p—11)17 (3.1.7)

+ B3] + B -2 + B )

Zb [Z [Z
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e
5 & i-1 j74 |
; bi—(p (- 1) LZ:; R + Bi(p - 3)] + B(p) = o (3.1.9)
s ¢ i—1 Cgf?) 1
;bz‘p_l{;%erBz’(p—?)} +B(p)=ﬁ, (3.1.10)
s o itk j—1 4 X
pr_l[{ B9+ B -]+ Bo) -
(3.1.11)
s i—1 cp—2
sz- {Z% (p]_2), +Bi(p—1)1 +B(p) = (3.1.12)
;bl{;awp_”2[k:1ajk b D) + Bj(p 3)} + Byl 1)} +B(p) = .
(3.1.13)
ibz i% i%‘k 4  +Bilp=2)| +Bilp— 1| +Bp) =, (3.114)
(p—3)
=2 Jj=1 k=1
s i—1 j—1 k-1 4
;bl{jl Q5 |:; QK (ézl 027 ( 4) + Bk(p 3)) + B ( 2)] + B ( 1)}
—|—B(p)=]%, (3.1.15)
where the backstep parts, B(j), are defined by
ZABerlz .' | ZBBS+1Z . j)1'7 ]:177p+1 (3116>

These order conditions are simply RK order conditions with backstep parts B;(-) and
B(+).
In the case p = 5, HB(k,s,5) has to satisfy the following additional condition:

s bz i—1 2 1

besides the order conditions (3.1.2)—(3.1.15).
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skl CORRECTIONS FOLLOWED REPORTS okttt skt
In fact, when expanding Taylor up to order 5 for numerical solution and exact

solution, we obtain:
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(3.1.18)
k-1 4
—J)
+SZBBS—H] TR
=1

which corresponds to elementary differential {{f}?}. Equation (3.1.18) becomes
(3.1.17) by using (3.1.1) and (3.1.16).

However, as p = 6, there is one more simplifying assumption in (3.1.3), that is:

i—1

1
E acj + By(2) = 50?- (3.1.19)
j=1

Substitute (3.1.19) into (3.1.17), we have (3.1.4). Therefore, as p > 6, there is
no additional condition (3.1.17).

3.2 Comparing effective SSP coefficients of HB with
other methods

Following closely Subsection 2.1.8, to obtain the largest SSP coefficients ¢, we max-
imize r mentioned in (2.1.75) that is subject to the component-wise inequalities
(2.1.76)—(2.1.83) together with the order conditions (3.1.2)—(3.1.15). The SSP ef-
fective coefficients co obtained in what follows are computed by (2.2.1).

In Tables 3.1-3.7, for each stage value s, the row-wise maxima, maxy, ceg(HB(k,s,p))

are listed with an asterisk. The largest c.¢ for each order p is in boldface. This data is
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Table 3.1: cs(HB(k,s,6)) as function of £ and s.

HM(5,6) | HM(6,6) | HM(7,6)
0.104 0.181 0.220
s\k | 2 3 4 5 6 7 TSRK(s,6)
4 (0.179) | (0.272) | (0.316) | (0.330) | (*0.339)
5 (0.272) | (0.327) | (0.342) | (0.344) | (*0.345)
6 (0.323) | (0.336) | (0.345) | (*0.349) | (0.349) 0.099
7 | (0.182) | (0.341) | (0.349) | (*0.351) | (0.351) | (0.351) 0.182
8 | 0241 | 0.328 | 0.341 | 0.345 | *0.347 0.242
9 | 0.287 | 0.334 | 0.343 | *0.345 0.287
10 | 0318 | 0.338 | 0.347 | 0.353 | 0.355 0.320

summarized in Table 3.8 and Fig. 3.2. In Tables 3.1-3.8, the SSP effective coefficients
Ceft, Which are identical to the c.g of HB for k-step methods combined with RK4, are
put inside parenthesis.

It is noted that, in Tables 3.1-3.7, for a given k, c.g(HB(k,s,p)) first increases with
s and then decreases. On the other hand, for a given s, ceg(HB(k,s,p)) first increases
with k£ and then stabilizes. Therefore, empty entries in the tables correspond either
to existing methods with smaller c.s. These facts confirm again Remark 2.2.3 in

Section 2.2.

3.2.1 Sixth-order methods

Table 3.1 shows c.g of HB as well as co of HM [17] and of TSRK ([23],[10]) methods
of order 6.
We see that two-step s-stage HB(2,5,6) have cog similar to ceg of TSRK(2,s,6).

But if we further increase the step number &, we can find HB(k,s,6) with considerably
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larger SSP coefficients.

Besides, it is not mentioned in Ketcheson, Gottlieb and Macdonald [23] that 4-
and 5-stage TSRK methods of order 6 exist. We found 3-step 4-stage HB(3,4,6) with
good c.s(HB(3,4,6)) = 0.179.

Comparing with hybrid methods, we remark that HB(k,4,6), with & > 4, are com-
petitive with Huang’s best 7-step HM(7,6) of order 6. For instance, c.s(HB(4,4,6)) =
0.272 > cogp(HM(7,6)) = 0.220. Substantially, for the same step number k = 5,
HB(5,7,6) has really better ceg than HM(5,6) with PEG(ceg(HB(5,7,6)), ceg(HM(5,6)))
238% (by (2.2.2)).

Table 3.1 also gives a new phenomenon, which did not happen with k-step meth-
ods combined with RK4. That is, c.g increases again when s > 8 after it has decreased

for k =3,4,5,6.

3.2.2 Seventh-order methods

Table 3.2 lists ceg of HB methods of order 7 together with ceq of HM(7,7) [17]
and TSRK ([23], [10]) of the same order. The SSP coefficients of HB(2,s,7) are
slightly lower than those of TSRK(s,7) as seen in the second and eighth columns.
Nevertheless, increasing the step number to k& = 3,4,...,7, we found HB(k,s,7),
s = 4,5,...,10, with larger effective SSP coefficients. For example, the best opti-
mal method of order 7 is the 6-step, 6-stage HB(6,6,7) with c.q(HB(6,6,7)) = 0.305.
Ketcheson, Gottlieb and Macdonald [23] found a two-step, 8-stage RK method of
order 7 with c.g(TSRK(8,7)) = 0.071 with the best c.(TSRK(12,7)) = 0.231. How-
ever, they did not mention that with lower step number s < 8, two-step, s-stage RK
methods of order 7 exist. Our investigation for HB methods shows that HB methods
of order 7 with only 4 stages exist. Despite their low stage number, HB methods of
order 7 are competitive with the best two-step RK of order 7. For example, HB(7,4,7)
has co(HB(7,4,7)) = 0.287, larger than cos(TSRK(12,7)) = 0.231 of the best 12-stage
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Table 3.2: cs(HB(k,s,7)) as function of £ and s.

s\k | 2 3 4 5 6 7 TSRK(s,7) | HM(7,7)
4 (0.141) | (0.219) | (0.256) | (*0.287) 0.117
5 (0.173) | (0.239) | (0.282) | (0.293) | (*0.296) ”

6 (0.232) | (0.290) | (0.301) | (0.305) | (0.305) ”
7 (0.231) | (0.286) | (0.292) | (*0.293) | (0.293) ”
8 |0.040 | 0.248 | 0.284 | 0.285 | 0.286 | *0.287 0.071 ”
9 |0.113| 0.250 | 0.280 | *0.290 | 0.290 0.124 ”
10 | 0.161 | 0.277 | *0.283 | 0.283 | 0.283 0.179 ”

method TSRK(12,7).

Compared with hybrid methods, despite the lower step number, k£ = 4, our op-
timal HB(4,s,7) are competitive with the 7-step HM(7,7), the best hybrid method at
present. Additionally, the PEG between our best method with HM(7,7) is nonnegli-
gible with PEG (ces(HB(6,6,7)), cer(HM(7,7))) = 161% (by (2.2.2)).

Except for HB(2,8,7) and HB(2,9,7), all our HB method have better c.s than
HM(7,7).

3.2.3 Eighth-order methods

The ceq of optimal HB(k,s,8) with stage number s = 4,5,...,10 and k = 3,4,...,8
are presented in Table 3.3 with largest c.q(HB(8,6,8)) = 0.261. Ketcheson, Gottlieb,
Macdonald and Shu found ceg of 11- and 12-stage TSRK ([23], [10]) of order 8. The
best of these has ceg(TSRK(12,8)) = 0.078. It is not mentioned in Ketcheson, Gottlieb
and Macdonald [23] that two-step, 4- to 10-stage RK methods of order 8 exist. Our
study of HB methods shows that these new methods of order 8 with only 4 stages
exist. We found HB(8,s,8) with good c.s(HB(8,5,8)) > 0.237 with stage number
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Table 3.3: cos(HB(k,s,8)) as function of £ and s.

s\k | 3 4 5 6 7 8

4 (0.123) | (0.180) | (0.213) | (*0.239)
5 (0.121) | (0.200) | (0.230) | (0.253) | (*0.259)
6 (0.169) | (0.239) | (0.256) | (0.258) | (0.261)
7 (0.169) | (0.236) | (0.240) | (0.243) | (*0.244)
8 |0.160| 0.198 | 0.235 | 0.241 | 0.243 | *0.244
9 10174 | 0202 | 0.224 | 0.236 | 0.239 | *0.240
10 | 0.186 | 0.217 | 0.231 | 0.234 | *0.237 | 0.237

s=4,5,...10.

Though general linear multistep, multistage SSP methods of order 9 to 12 with
nonnegative coefficients have not been found in the literature, similar to the case of
HB methods combining k-step and RK4 considered in Subsection 3.2.5 of Chapter
3, we discovered HB(k,s,p) of these high orders with good effective SSP coefficients,

described in the following subsection 3.2.4.

3.2.4 High order methods

We numerically found optimal HB(k,s,9) with stage number s = 4,5,...,10. Their
cofr are listed in Table 3.4 with largest c.q(HB(8,6,9)) = 0.228.

In addition to the above results, the optimal HB(k,s,10) with stage number
s = 4,5,...,10 are found numerically and Table 3.5 lists all the c.g of our optimal
methods with largest c.g(HB(8,6,10)) = 0.186.

The optimal HB(k,s,11) as well as HB(k,s,12) with stage number s =4,5,...,10
and their c.g are listed in Table 3.6 and 3.7, respectively (see more in [40], [42]).

We see in Tables 3.6 and 3.7 that c.s(HB(8,8,11)) = 0.156 and c.¢(HB(8,8,12)) =



3.2. Comparing effective SSP coefficients of HB with other methods 57

Table 3.4: c.e(HB(k,s,9)) as func-

tion of & and s. Table 3.5:  ceg(HB(k,s,10)) as
function of k£ and s.

s\k | 4 5 6 7 8 s\k 6 7 8

4 (0.091) | (0.135) | (*0.171) 4 (0.073) | (*0.117)
5 (0.121) | (0.177) | (0.204) | (*0.220) 5 | (0.088) | (0.143) | (*0.172)
6 (0.168) | (0.194) | (0.215) | (0.228) 6 | (0.126) | (0.168) | (*0.185)
7 (0.162) | (0.196) | (0.207) | (*0.215) 7 1 (0.131) | (0.171) | (*0.182)
8 [0.138| 0178 | 0203 | 0.216 | *0.218 8 | 0156 | 0.182 | 0.186
9 0154 | 0195 | 0206 | 0.208 | *0.208 9 | 0169 | 0.179 | *0.180
10 | 0.164 | 0.189 | 0.191 | 0.191 | *0.191 10 | 0155 | 0.167 | *0.172

0.116 are largest for the values of k£ and s on hand, corresponding to order 11 and 12.

Table 3.8 lists maxy, ceg(HB(k,s,p)), which are the numbers with an asterisk and
the boldface numbers in Tables 3.1-3.7.

In Table 3.8, as expected, for a given s, cer(HB(k,s,p)) decreases with increasing
p. Moreover, the data from this table shows the phenomenon clearer than in the
case of combining k-step and RK4. It is also seen that ceg(HB(k,s,p)) of orders
p=>5,6,...,12 are among the highest when the number of stages is about 6 to 10.

Hence, based on the cqg, it seems that there are very few HB families which
can have methods up to order 12 with good c.g, namely, the 7-, 8-, 9- and 10-stage
HB methods of order 5 to 12. Especially, the 8-stage HB methods are among the
most efficient methods on hand at least in term of stability constraints. In chapter
5, numerical results about 8-stage HB methods, which combine k-step and RK5, will
be presented.

In Fig. 3.1, maxy, ceg(HB(k,s,p)), p = 4,5, ...,12, is plotted as a function of the
stage number s. We note that, for a given p > 5, generally, maxy, cog(HB(k,s,p)) first
increases with s and then decreases.

Figure 3.2 plots maxy, s cee(HB(k,s,p)) as a function of the order p. We note that,
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Table 3.6:  ceg(HB(k,s,11)) as Table 3.7:  ceg(HB(k,s,12)) as
function of k£ and s. function of k£ and s.

s\k 6 7 8 s\k 7 8
4 (*0.053) 5 | (0.010) | (*0.057)
5 (0.080) | (*0.126) 6 | (0.035) | (0.001)
6 | (0.029) | (0.092) | (*0.142)
7 0.062 *0.097
7 0.086 0.123 *0.143
8 0.106 0.135 0.156 8 0.100 0.116
9 | 0114 | 0146 | *0.155 9 | 0.097 | *0.112
10 0.115 0.139 *0.143 10 0.089 *0.103

as expected, maxy, s cet(HB(k,s,p)) decreases with increasing p.

Furthermore, as we see in Tables 3.1-3.8, most of the cog of HB(k,s,p) based on
RKS5 in this section when s > 8 are not identical to c.g of HB methods based on RK4
in Section 2.2. Therefore, in the next section we shall concentrate on these stages to

make comparison.

3.3 Comparing HB(k, s,p) based on combining k-
step with RK2, RK3, RK4 and RK5 methods

Notation 3.3.1 We denote the SSP HB methods used in this section as HBrk,(k,s,p)
for Hermite—Birkhoff methods of order p combining k-step methods and s-stage RKq
of order q for q =2,3,4,5.

The effective SSP coefficients co(HB(k,s,p)) of HB(k,s,p) of order p = 5,6, ...,12
are listed in Tables 3.9, 3.11 and 3.13 for stages s = 8,9, 10, respectively. In these
tables, the effective SSP coefficients are shown as a function of the Runge-Kutta
methods RKq, ¢ = 2,3,4,5, which are combined with a k-step method to obtain
HB(k,s,p).
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Table 3.8: maxy cer(HB(k,s,p)) of HB(k,s,p) for k-step methods combined
with RK5 as function of s and p.

p\s 4 5 6 7 8 9 10
5 | HB(6,4,5) | HB(555) | HB(3,65) | HB(3,75) | HB(2,8,5) | HB(2,95) | HB(2,10,5)
(0.392) (0.405) (0.404) (0.426) (0.447) (0.438) (0.425)
6 | HB(7,4,6) | HB(7,56) | HB(6,6,6) | HB(5,76) | HB(686) | HB(596) | HB(5,10,6)
(0.339) (0.345) (0.349 (0.351) 0.347 0.345 0.355
7 | HB(74,7) | HB(7,57) | HB(6,6,7) | HB(6,7,7) | HB(7,8,7) | HB(59,7) | HB(4,10,7)
(0.287) (0.296) (0.305) (0.293) 0.287 0.290 0.283
8 | HB(8,4,8) | HB(8,58) | HB(8,6,8) | HB(8,7,8) | HB(7,88) | HB(7,9,8) | HB(6,10,8)
(0.239) (0.259) (0.261) (0.244) 0.244 0.240 0.237
9 | HB(8,4,9) | HB(859) | HB(8,6,9) | HB(8,7,9) | HB(889) | HB(899) | HB(6,10,9)
(0.171) (0.220) (0.228) (0.215) 0.218 0.208 0.191
10 | HB(8,4,10) | HB(8,5,10) | HB(8,6,10) | HB(8,7,10) | HB(8,8,10) | HB(8,9,10) | HB(8,10,10)
(0.117) (0.172) (0.185) (0.182) 0.186 0.180 0.172
11 | HB(8,4,11) | HB(8,5,11) | HB(8,6,11) | HB(8,7,11) | HB(8,8,11) | HB(8,9,11) | HB(8,10,11)
(0.053) (0.126) (0.142) 0.143 0.156 0.155 0.143
12 HB(8,5,12) | HB(8,6,12) | HB(8,7,12) | HB(8,8,12) | HB(8,9,12) | HB(8,10,12)
(0.057) (0.091) 0.097 0.116 0.112 0.103
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Figure 3.2: maxy s ce(HB(k,s,p))
versus order p.
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Table 3.9: ce(HBRriy(k,8,p)) for p = 5,6,...,12, as a function of RKgq,
q =2,3,4,5, which combine a k-step method to obtain HBrk,(k,8,p) for the
listed &, p taken row-wise.

cef Of 8-stage HB combining k-step and:
p | k|| RK2 | RK3 | RK4 RK5
5 [ 3] 0.236 | 0.356 | 0.447 0.447
6 | 5| 0.237 | 0.312 | 0.339 0.345
7 6] 0.193 | 0.236 | 0.285 0.286
8 | 7| 0.173 | 0.207 | 0.233 0.243
9 | 8| 0.128 | 0.178 | 0.210 0.218
10 | 8 || 0.093 | 0.127 | 0.176 0.186
11 | 8 || 0.020 | 0.093 | 0.127 0.156
12| 8 0.020 | 0.091 0.116

Following Definition 2.2.2 and formula (2.2.2), the percentage efficiency gain
(PEG) of ceqr of HBris((k,s,p) over HBriy(k,s.p), ¢ = 2, 3, 4, for each order p are listed
in Tables 3.10, 3.12 and 3.14 for stages s = 8,9, 10, respectively. Here HBrka(k,2,p)
are Huang’s hybrid methods [17].

The methods HBrkq(k,s,p), ¢ = 2,3,4,5, are compared in Fig. 3.3 on the basis

of their effective SSP coefficients c.¢ as a function of their order p > 5.

Remark 3.3.2 From these tables and Fig. 3.3, it is observed that:

o [or the same stage s, same order p and same step number k, if the order of RK,
which is combined with a k-step method, is higher, the c.g of the corresponding
HB method is higher. For example, we consider the cases of RKJ and RKS5, to
obtain HB(k,s,p) methods in both cases, we agree Taylor expansions of exact
and numerical solutions. This step will give the same number of conditions.

However, after this step, we will use different number of simplifying assumptions
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Table 3.10: PEG(cet(HBrks(k,8.,p)), cer(HBriy(k,8,p))), ¢ = 2,3,4, for the
listed k, p taken row-wise.

PEG of ceg(HBRrks(k,8,p)) over:
p | k| cei(HBri2(k,8,p)) | cer(HBris(k,8,p)) | cei(HBria(k,8,p))
5 |3 89 % 26 % 0%
6 |5 46 % 11% 2 %
716 48 % 21 % 0%
8 | 7 40 % 17 % 4 %
9 |8 70 % 22 % 4 %
10 | 8 100 % 46 % 6 %
11| 8 680 % 68 % 23 %
12 | 8 430 % 27 %

Table 3.11: cos(HBriy(k,9,p)), ¢ = 2,3,4,5, for p = 5,6, ..., 12, respectively,
as a function of RK¢q, which combine a k-step method to obtain HBrk,(k,9,p)
for the listed £, p taken row-wise.

ceff Of 9-stage HB combining k-step and:
p | k| RK2 | RK3 | RK4 RK5
5 15| 0.285 | 0.321 | 0.438 0.438
6 | 5 0.213 | 0.284 | 0.318 0.345
7 |5 0.140 | 0.213 | 0.277 0.290
8 | 8] 0.159 | 0.193 | 0.212 0.240
9 | 8| 0.115 | 0.159 | 0.191 0.208
10 | 8 || 0.084 | 0.115 | 0.159 0.180
11 | 8 || 0.018 | 0.084 | 0.114 0.155
12 1 8 0.019 | 0.082 0.112
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Table 3.12: PEG of ceg(HBRrks(k,9,p)) over ces(HBriy(k,9.p)), ¢ = 2,3,4,
respectively, for the listed k, p taken row-wise.

PEG of ceg(HBRrks(k,9,p)) over:
p | k| cei(HBri2(k,9,p)) | cer(HBris(k,9,p)) | cei(HBria(k,9,p))
5 |5 54 % 36 % 0%
6 |5 62 % 21 % 8 %
715 107 % 36 % 5%
8 |8 51 % 24 % 13 %
9 |8 81 % 31 % 9%
10 | 8 114 % 57 % 13 %
11| 8 761 % 85 % 36 %
12 | 8 489 % 37 %

Table 3.13: cep(HBRrxqy(k, 10,p)) for p = 5,6,...,12 as a function of RKg,
which combine a k-step method to obtain HBgrxk,(k, 10,p), ¢ = 2, 3,4, 5, for
the listed k,p taken row-wise.

cef of 10-stage HB combining k-step and:
p | k| RK2 | RK3 | RK4 RK5
5 151 0.259 | 0.289 | 0.425 0.425
6 | 5] 0.194 | 0.253 | 0.291 0.353
7 |61 0.157 | 0.189 | 0.260 0.283
8 | 81 0.144 | 0.175 | 0.193 0.237
9 | 8] 0.104 | 0.144 | 0.175 0.191
10 | 8 || 0.077 | 0.104 | 0.144 0.172
11 | 8 || 0.017 | 0.077 | 0.104 0.143
12| 8 0.017 | 0.076 0.103
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Table 3.14: PEG(CGH<HBRK5(k,1O,p)), Ceﬁ(HBRKq(/{Z,lo,p))), q = 2,3,4, for
the listed k, p taken row-wise.

PEG of ceg(HBris(k,10,p)) over:
p | k| cer(HBria(k,10,p)) | cep(HBri3(k,10,p)) | ce(HBria(k,10,p))
5|5 64 % 47 % 0%
6 |5 82 % 40 % 21 %
716 80 % 50 % 9%
8 |8 65 % 35 % 23 %
9 |8 84 % 33 % 9%
10 | 8 123 % 65 % 19 %
11 | 8 740 % 86 % 38 %
12 | 8 506 % 36 %

to reduce these conditions. We use (p — 3) and (p — 4) equations for RK)
and RK5, respectively (see (2.1.5) and (3.1.3)). The order of k-step methods
combined now are (p—3) and (p—4) for RK} and RKS5, respectively. Therefore,
the number of constraints in optimization problem (2.1.75) in the case of RK)

are more than in the case of RK5. It leads to larger c.g in the case of RK).

o HBgrks(k,s,p) compare favorably with the corresponding HBri, (k,s,p), ¢ = 2, 3,4,
for stages s = 8,9,10 on the basis of ceq, especially for the higher order such
as p = 10,11,12. For example, the PEG of ceg( HBri5(8,9,11)) is 761% over
cef(HBriz(8,9,11)), the PEG of c.y( HBris(8,10,12)) is 506% over c.g( HBris(8,10,12)),
and the PEG of c.g(HBris(k,10,p)) is 38% over ceg( HBriy(8,10,11)) according
to Tables 3.12 and 3.1/, respectively.



Chapter 4

Numerical Results for Some SSP
HB Methods Based on Combining
k-Step with RK4 Methods

This chapter presents some HB methods in noncanonical as well as canonical forms
with fixed stage number or fixed order as typical examples when combining k-step
methods with RK4. These new methods are combined with a spatial discretization
such as difference quotient and WENOS5 to solve Burgers’ equation and linear ad-
vection equation. The obtained numerical results presented in this chapter show the

efficiency of our methods.

4.1 Non-canonical SSP 4-stage HB methods and
difference quotients

In this section, we shall consider explicit, k-step, 4-stage, SSP general linear methods
of order p, p = 5,6,...,8, with nonnegative coefficients as a combination of linear k

-step methods of order p — 3 and a 4-stage RK method of order 4 (see Section 5 and

65
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6 in [38] for details).

The family of SSP HB methods that combine linear k-step methods of order p—3
and 4-stage RK method considered in this section, are 4-stage methods of order 4-8
with low step number.

The 4 formulae of these 4-stage HB methods to perform integration from ¢,
to t,+1 are defined in Section 2.1 by (2.1.1) and (2.1.2) with s = 4. Their order
conditions are determined from (2.1.4)—(2.1.10) with s = 4.

The Shu-Osher and Butcher forms of these noncanonical SSP HB methods to-
gether with Theorem 2.1.4 to compute their feasible SSP coefficients are studied from
Subsections 2.1.3-2.1.6 in Chapter 2 with s = 4.

Subsection 4.1.1 is about the construction of 4-stage SSP HB methods and a
comparison of the effective SSP coefficients of our new methods to other methods.
The numerical results are presented in Subsection 4.1.2 including the validating of
the order preservation property, and the comparison when applied to Burgers’ equa-
tion. The formulae of eleven noncanonical HB(k, 4, p) methods are listed in the Ap-

pendix A.1.

4.1.1 Construction of 4-stage SSP HB methods

Since there are many free parameters in HB(k,s,p) when the number of steps, k,
is sufficiently large, we use the MATLAB Optimization Toolbox to search for the
methods with largest ¢ for different & and different order p, see more in [38] for the
complete families of 4-stage HB method of order p. The new HB(k,4,p) have larger
effective SSP coefficients than known SSP hybrid methods (HM(k,p)) with the same
k and p, especially when k is small.

There are many optimal SSP methods and results related to order 4 such as the
family of SSP RK methods of Spiteri and Ruuth, Huang’s hybrid methods [17], and
Gottlieb, Shu and Tadmor [12] with the result about the non-existence of two-step
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HM methods of order four with nonnegative coefficients.

Note that the new HB(2,4,4) requires one step less than HM(3,4) while both are
fourth order. Also, the 4-stage HB(2,4,4) uses one fewer function evaluation than the
5-stage RK(5,4), both being of order 4.

Ruuth and Spiteri recently considered in [44, 47] fifth-order methods with neg-
ative coefficients. In case of linear multistep methods, Ruuth and Hundsdorfer [45]
pointed out that fifth-order methods of this type need at least k = 7 steps. Huang [17]
constructed a hybrid four-step, fifth-order SSP method with nonnegative coefficients,
called HM(4,5), with ¢(HM(4,5)) = 0.371 and c.g(HM(4,5)) = 0.185.

Some authors found optimal SSP schemes of order 7 such as Huang [17] with
hybrid methods, Ketcheson, Gottlieb, and Shu [10] with TSRK methods.

Table 4.1 lists ¢(HB(k,4,p)), cet(HB(k,4,p)), ¢(OM(k,p)), and cog(OM(k,p)) of
HB(k,4,p) and known methods of order p in columns 3, 4, 6, and 7, respectively.
Column 8 lists PEG(cog(HB(k,4,p)), cer(OM(k,p))) of HB methods over other known
methods. It is seen that the PEG(c.g(HB(k,4,p)), cet(OM(k,p))) is not negligible.

sk kok ook ok CORRECTIONS okttt stk ok

For example, PEG (cet(HB(5,4,4)), ces(RK(4,4))) is 197% and PEG(ce(HB(5,4,6)),
cet(HM(5,6))) is 202%. It is also noted that for given p, PEG(ceg(HB(k,4,p)), ces(HM(k,p)))
decreases as k increases.
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Table 4.1 also shows that the new methods are generally competitive with known
methods. As a first example, HB(5,4,4) has cog(HB(5,4,4)) = 0,494 larger than every
k-step method of order 4 on hand including the seven-step SSP hybrid HM(7,4)
with large cegr(OM(k,p)) = 0.469. As a second example, these new methods are
competitive with fifth-order hybrid methods given by Huang [17] based on the same
number of steps, and with fifth-order RK methods with ten stages given by Ruuth
[44]. This ten-stage method has ceg(OM(k,p)) = 3.395/10 ~ 0.339, which is less than
cef(HB(5,4,5)) = 0.390 of HB(5,4,5).



4.1. Non-canonical SSP 4-stage HB methods and difference quotients 68

Table 4.1:  PEG(cet(HB(k,4,p)),cer(OM(E,p))) for k-step HB(k,4,p),
HM(k,p), LM(k,p) and GL(k,p) and s-stage RK(s,p) all of order p. Compar-
ison is row-wise.

Meth. | c(HB(k,4,p)) | cesr(HB(k,4,p)) Meth. | ¢(OM(k,p)) | ces(OM(k,p)) || PEG
HB(2,4,4) 1.593 0.398 GL(2,4) 1.59 0.398 0%
HB(3,4,4) 1.843 0.461 HM(3,4) 0.494 0.247 87 %

” GL(3,4) 1.84 0.461 0%
HB(4,4,4) 1.932 0.483 HM(4,4) 0.682 0.341 42 %

” CL(4,4) 1.93 0.483 0%
HB(5,4,4) 1.979 0.494 HM(5,4) 0.793 0.396 25 %

” HM(7,4) 0.938 0.469 5%

” RK(10,4) 6.000 0.600 -18 %

” RK(5,4) 1.508 0.302 64 %

” RK(4,4) 0.667 0.167 197 %

5 | HB(4,4,5) 1.537 0.384 HM(4,5) 0.371 0.185 108 %
HB(5,4,5) 1.562 0.390 HM(5,5) 0.525 0.262 49 %

” RK(10,5) 3.395 0.339 15 %
HB(6,4,5) 1.569 0.392 HM(6,5) 0.657 0.328 20 %

6 | HB(5,4,6) 1.265 0.316 HM(5,6) 0.209 0.104 202 %
HB(6,4,6) 1.321 0.330 HM(6,6) 0.362 0.181 82 %

7 | HB(7,4,7) 1.148 0.287 HM(7,7) 0.234 0.117 145 %




4.1. Non-canonical SSP 4-stage HB methods and difference quotients 69

4.1.2 Numerical results
A. Validating order preservation

In many problems, the order of time discretizations is smaller than the conventional
order of method formulae. This phenomenon is called order reduction phenomenon,
see [49]. To illustrate the boundary/source order reduction phenomenon we consider

a classic test problem described in [49]:
ur(z,t) = —ug(x,t) + b(x,t), (4.1.1)

over 0 < x < 1and 0 <t < 1 with initial condition u(z,0) = 1 4+ x, boundary
conditions u(0,t) = 1/(1 + t) and source term b(z,t) = (t — z)/(1 + t)*>. The exact
solution, u(x,t) = (1 4+ x)/(1 + t), is linear in space, allowing the use of first-order
upwind space discretization without introducing discretization errors:

n+l
i

n n n
U; Uy — Uy

At T Az

u

:0’

where solution u? ~ u(t;, z,) for t; = iAt and z,, = nAt.

For the time integration, the SSP 5-stage RK method of order 4 and the classic
RK method of order 4 are used. All considered explicit RK methods have stage order
equal to one. Sanz-Serna et al. [49] show that explicit RK methods with p > 3
suffer from order reduction on problems with nonhomogeneous boundary conditions
or nonzero source terms such as (4.1.1).

For the test problem (4.1.1), we distinguish two cases, one that illustrates the
order reduction phenomenon, and for validation purposes, one that does not. Specifi-
cally, if the spatial and temporal grids are refined simultaneously, one notices that low
stage order methods suffer from order reduction [49]. If the space grid is kept fixed,
that is the ODE problem is fixed, then the (classic) order of consistency is preserved.

In the cases of RK(4,4) and RK(5,4), Table 4.2 shows the discretization error

versus the time step without order reduction (when Az = 1/10) and with order
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Table 4.2: L.-error at t = 1 for the listed methods applied to Prob-
lem (4.1.1).

HB(4,4,5) HB(4,4,6) HB(5,4,5) HB(5,4,6)
At/Az || 1/10 1/20 1/10 1/20 1/10 1/20 1/10 1/20
1/20 2.04e-8 | 2.33¢-8 | 1.46e-9 | 1.90e-9 | 2.08e-8 | 2.25e-8 || 2.19¢-9 | 2.81c-9
1/40 1.29¢-9 | 1.60e-9 || 4.85¢-11 | 6.36e-11 || 1.32e-9 | 1.62e-9 || 6.85¢-11 | 8.98¢-11

1/80 5.13e-11 | 7.41e-11 || 1.01e-12 | 1.53e-12 || 5.26e-11 | 7.49e-11 || 1.54e-12 | 2.13e-12

HB(6,4,6) HB(5,4,7) RK (4,4) RK(5,4)
At/Az || 1/10 1/20 1/10 1/20 1/10 1/20 1/10 1/20
1/20 3.07e-9 | 3.86e-9 | 2.41e-10 | 5.98¢-10 | 2.62e-6 | 1.63e-5 | 1.14e-6 | 5.89e-6

1/40 9.80e-11 | 1.25e-10 || 4.44e-12 | 5.78e-12 || 1.27e-7 | 6.55e-7 6.08e-8 | 2.89e-7
1/80 2.11e-12 | 2.97e-12 || 5.21e-14 | 7.66e-14 || 6.91e-9 | 3.24e-8 3.47e-9 1.56e-8

reduction (when Az = 1/20). In the former case, the order of the RK methods is
preserved (if Ax is maintained fixed at Ax = 1/10), whereas in the later case, the
order clearly drops for all RK methods. A special boundary/source treatment can be
used to alleviate this problem, but with great effort and limited success [2, 48, 49].
This discussion also applies to implicit RK methods with low stage orders such as
DIRK [33].

The HB(k,4,p) methods listed in Table 4.2 maintain well their consistency orders
compared to RK(4,4) and RK(5,4), in particular when space and time are refined
simultaneously.

In the next parts, we present some numerical results to confirm the validity of
our new optimal schemes on some test problems mentioned in Laney [27].

From now on we shall use the total variation semi-norm ||y, || = TV (y,) where
TV (yn) = Z Ynj+1 = Ynjl, (4.1.2)
J

where y, ; ~ y(t,,z;) for t, = nAt and z; = jAt, and say that a method is total
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variation diminishing (TVD) if

The following two definitions will help compare different methods with different

computational costs more easily and fairly (See more in [17]).

Definition 4.1.1 The largest effective CFL number of method M denoted by numeg(M),

for error e,
| TV(u(x, thna)) — TV(u(z, to))| <e, (4.1.4)
15 defined by
At 1
numeg(M) = max {A_x Z} : (4.1.5)

with time stepsize At, space stepsize Ax and { is the number of function evaluations
of the method per time step.
Then max Atyy, = (Ax numeg(M) is called the mazimum numerical stepsize.

We let max{Atyeor} be the mazimum theoretical time step taken as
max Attheor = C(M)AtFE, (416)

and Ryum theor be the ratio of the maximum numerical to theoretical stepsizes

max At ,um

Rnum/theor = (417)

max Atpeor

Definition 4.1.2 The percentage efficiency gain, PEG(numeg), of numeg of method 2
over method 1, is defined by

nuMer (M2) — numes (M1
g (M2) 7 [

PEG(numeg(My), numeg(M,)) = numeg (M1)

(4.1.8)

For the same method, numeg(M) and Ryum Jtheor Will be different to different test

problems. There are many illustrations shown in Chapter 4 and 5.
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To apply the HB schemes, we need some starting values tg, t1,t3,...,tx_1 with
At = (Aznumeg(M). These values are computed by using the optimal RK(5,4)

scheme [46] with a small initial step size h ~ 1.0 e-04.

B. Comparing SSP HB with other methods on Burgers’ equation with

unit-step initial condition

As a first comparison of our new methods with RK methods, following Huang [17],

we consider Burgers’ equation in Problem 1.

Problem 1 Burgers’ equation with unit-step initial condition:

1 1, —-1<x<0,
—u(z,t) + =— [5 u(z, t)z} =0, wu(x,0)= (4.1.9)
0, 0<zx <1,
and boundary condition u(—1,t) =1 for ¢t > 0.
By using characteristic methods and the Rankine-Hugoniot jump condition, we
can easily find the weak solution:

1, —1<az<t)2
u(z,t) = (4.1.10)

0, t/2<x<1,

where the shock curve moves along x = t/2 (see Figures 4.1 and 4.2).

We discretize the spatial derivative by the difference quotient

1 |1 1
— | = (ui(t)® = = (uj—1(1))? 4.1.11
A |3 - jlum2]. (a111)
with space stepsize Az = 1/150, where u;(t) is an approximation to u(x;,t) with
x;=jAz,j=...,—-2,-1,0,1,2,.... This leads to the semi-discrete system
d 1 |1 1
0 = =3 |00 - 5102 (1112
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Y
S

-1 0 1

Figure 4.1: Characteristic curves associated with the initial-value Problem 1.

x=1t/2

-1 0 1

Figure 4.2: Characteristic curves associated with the solution of Problem 1.
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to which a time discretization can be applied.
We consider the total variation norm of the numerical solution for this problem
at tina = 1.8 and take At sufficiently small such that (4.1.4) holds with € = 5.0e-02.
In Table 4.3, we list the maximum effective CFL number, num.g, and the ratio
max At/ max Atipeor of SSP HB and other methods for Problems 1 on page 72.
Column 8 shows the PEG(num.g) of HB methods over hybrid and other known meth-
ods.

It is seen that:

e Generally, the k-step HB methods of orders 4 to 7 have higher numgg than
k-step hybrid methods, for the same k£ and RK methods with the same stage

number s.
e An increase in the step number &k improves the num.g for the same order.

e HB(2,4,4), HB(3,4,4) and HB(4,4,4) behave almost like GL(2,4), GL(3,4) and

GL(4,4), respectively, since their coefficients are almost identical.

e In Table 4.3, num.g of HB(5,4,4), HB(4,4,5), HB(6,4,6) and HB(7,4,7) compare

favorably with numeg of most of the other methods of the same order.

e PEG(num.g) between HB method and HM decreases as the step number k
increases. For the same order, most of the new methods have larger PEG (num.g)

than Huang’s hybrid methods when k is small.

C. Comparing SSP 4-stage HB and other methods on Burgers’ equation

with a square-wave initial condition

With the second comparison, we shall consider Burgers’ equation with a square-wave

initial value in Problem 2, which is one of Laney’s five test problems [27].
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Table 4.3: PEG of num.g for HB(k,4,p) over HM(k,p) and RK(s,p), and ratio
Ryum/theor applied to Problem 1.

P Meth. nuMeg | Ryum/theor Meth. nuMeg | Ryum/theor || PEG(numeg)

4 || HB(2,4,4) | 0.517 1.111 GL(2,4) | 0517 1.111 0%
HB(3,4,4) | 0.572 1.065 HM(3,4) | 0.302 1.049 89 %
” " GL(3,4) | 0.572 1.065 0%
HB(4,4,4) | 0.610 1.083 HM(4,4) | 0.408 1.026 50 %
" " GL(4,4) | 0.610 1.083 0%
HB(5,4,4) | 0.636 1.102 HM(5,4) | 0.486 1.051 31 %
HB(5,4,4) | 0.636 1.102 RK(10,4) | 0.662 0.946 -4 %
" " RK(5,4) | 0.496 1.410 28 %
" " RK(4,4) | 0.414 2.130 54 %

5 || HB(2,4,5) | 0.385 1.547

0.496 1.246
0.538 1.201 HM(4,5) | 0.342 1.581 57 %
0.516 1.133 HM(5,5) | 0.430 1.405 20 %

0.325 1.557
0.378 1.194
0.396 1.074 HM(5,6) | 0.292 2.396 36 %

0.316 1.922
0.368 1.439
0.408 1.368
0.410 1.225 HM(7,7) | 0.208 1.525 97 %

0.244 1.708
0.294 1.397
0.310 1.248

(2,4,5)
(3,4,5)
(4,4,5)
(5,4,5)
(3,4,6)
(4,4,6)
(5,4,6)
HB(6,4,6) | 0.422 1.096 HM(6,6) | 0.258 1.222 64 %
(4,4,7)
(5,4,7)
(6,4,7)
(7.4,7)
(5,4,8)
(6,4,8)
(7,4.8)
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1 1/3 0 1/3 1

Figure 4.3: Characteristic curves associated with the initial-value Problem 2.

Problem 2 Burgers’ equation with a square wave initial condition:

) o I1 L || <3,
—u(z,t) + — |z u(z,t)*| =0, u(z,0)= ’ (4.1.13)
ot Ox |2 1

Here the jump at x = —% creates an expansion fan and the jump at z = %

creates a shock. Using the method of characteristics and the Rankine-Hugoniot jump
condition, the exact solution of the problem (see Figures 4.3 and 4.4) on domain [—1, 1]

is as follow:

(
0, 1<z < %,
1
$;§7 _%Sx<t_%7
u(z,t) = (4.1.14)
1, t—i<az<i+i
t 1
\O, §—|—§§JC§1,

We notice that solution (4.1.14) is the solution until the expansion fan z =t — 3

and the shock z = % + 1 intersect at the point (1, 3).
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I////
X

Il//

-1 -1/3 0 1/3 1

Figure 4.4: Characteristic curves associated with the solution of Problem 2

for t <4/3.
If we continue consider > 1, then the solution of Problem 2 also includes:
(
0, —-1<z<-—3,
_1
u(z,t) = i l<ac \/Sz)ﬂ,
V3t+1
\07 3 S x?

for t > %.

We discretize the spatial derivative of Problem 2 with periodic boundary condi-
tion u(—1,t) = u(1,t) for ¢ > 0 by the difference quotient (4.1.11) and compute the

total variation of the numerical solution as a function of the effective CFL number,

At/(ﬁAm) at tﬁna1 = 0.6.
The num.z of HB methods and hybrid methods applied to Problem 2 are listed

in columns 3 and 6 of Table 4.4, respectively. The last column lists the PEG(numg)

of HB methods over hybrid methods and other known methods.

It is seen that
e For the same order, PEG(num.gs) decreases as k increases but a simultaneous

increase of k and p improves PEG(numeg). In other words, Problem 2 confirms
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again that the new methods have larger PEG(numeg) than Huang’s hybrid

methods when k is small.

e In Table 4.4, num.g of HB(5,4,4) compares favorably with num.g of other meth-
ods of the same order, including RK(10,4),

e numg of HB(4,4,5), HB(6,4,6) and HB(7,4,7) compare favorably with num.g of

other methods of the same order.

We observe that, as with RK methods [17], the ratio max At/ max Atpeor 0f
SSP HB for Problems 1 (page 72) and 2 (page 76) are greater than 1. The theoretical
strong stability bounds of SSP HB methods are then verified in the numerical compar-
ison of maximum time steps for Problem 1 and confirmed again in Problem 2. More-
over, generally, from Tables 4.3 and 4.4, HB methods have max At,,, > max Atpg.
Besides, these tables suggest the maximum step size we can take for each HB time
discretizations to obtain good numerical solutions.

In conclusion, a collection of new SSP explicit 4-stage k-step Hermite-Birkhoff
methods, HB(k,4,p), of orders p = 4,...,8 with nonnegative coefficients are con-
structed as k-step analogues of fourth-order Runge-Kutta methods, incorporating
function evaluations at three off-step points. The new methods tend to have larger
effective CFL coefficients than hybrid methods [17] with the same number of steps
and other frequently used methods. Most of the proposed general linear methods
can attain high stage orders, a property that alleviates the order reduction phe-
nomenon encountered in the classic explicit RK schemes due to nonhomogeneous
boundary/source terms (see [4]). Similar to [17], finding more efficient generalized

SSP methods appears to be promising in the light of the present work.
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Table 4.4: PEG of num.g of HB(k,4,p) over HM(k,p) and other known meth-

ods, and the ratio Ryum/theor for Problem 2.

Meth. NUMef | Rpum/theor Meth. NUMeft | Rpum/theor | PEG(numeg)
HB(2,4,4) | 0.540 | 1.141 GL(2,4) | 0540 | 1.141 0%
HB(3,4,4) | 0.594 1.085 HM(3,4) | 0.310 1.056 92 %
7 7 7 GL(3,4) 0.594 1.085 0%

HB(4,4,4) | 0.634 1.105 HM(4,4) | 0.406 1.002 56 %
” 7 N GL(4,4) 0.634 1.105 0%

HB(5,4,4) | 0.664 1.130 HM(5,4) | 0.470 0.998 41 %
” ” ” RK(10,4) | 0.618 | 0.867 7%
” ” ” K(5,4) | 0.442 | 1.234 50 %
7 7 7 RK(4,4) | 0.348 1.758 91 %

HB(2,4,5) | 0.369 | 1.455

HB(3,4,5) | 0.504 | 1.242

HB(4,4,5) | 0.538 1.179 HM(4,5) | 0.294 1.334 83 %

HB(5,4,5) | 0.532 1.147 HM(5,5) | 0.382 1.225 39 %

HB(3,4,6) | 0.325 | 1.528

HB(4,4,6) | 0.394 | 1.221

HB(5,4,6) | 0.412 1.097 HM(5,6) | 0.252 2.030 63 %

HB(6,4,6) | 0.430 1.096 HM(6,6) | 0.274 1.274 57 %

HB(4,4,7) | 0.316 | 1.886

HB(54,7) | 0.384 | 1.474

HB(6,4,7) | 0.424 | 1.395

HB(7,4,7) | 0.424 1.244 HM(7,7) | 0.232 1.669 83 %

HB(5,4,8) | 0.260 1.787

HB(6,4,8) | 0.310 | 1.446

HB(7,4,8) | 0.326 | 1.288
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4.2 Non-canonical SSP HB methods of order 4 and
WENOS5

In this section, to solve system (1.1.2), we construct non-canonical optimal, 4- to 10-
stage, explicit SSP HB methods of order 4, denoted by HB(k,s,4) with nonnegative
coefficients by combining linear k-step methods of order 1 with a 4- to 10-stage RK
method of order 4 (see [35] for details).

The s formulae of these s-stage HB methods of order 4, defined by (2.1.1) and
(2.1.2) in Section 2.1 with s = 4,5,...,10, perform integration from t, to t,.;.
Their order conditions are (2.1.4)—(2.1.10) with p = 4. The Shu-Osher and Butcher
form of these non-canonical SSP HB methods using Theorem 2.1.4 to compute their
feasible SSP coefficients are studied in (3.1.3)—(3.1.7) with p = 4. Their optimization
problem can be formulated as (2.1.35)—(2.1.37) subject to all the constraints listed in
Subsection 2.1.4 and the order conditions (2.1.4)-(2.1.10) for p = 4 (see also [35]).

In Subsection 4.2.1, we compare the effective SSP coefficients of our methods
with those of other methods. The numerical results on the efficiency of the new
methods tested on Burgers’ equation are presented in Subsection 4.2.2. The list of

thirteen noncanonical HB(k, s,4) formulae is in the Appendix A.2.

4.2.1 Comparing our new HB(k,s,4) with other SSP methods
The ceq coefficients of HB(k,s,4) methods are listed in Table 4.5
Remark 4.2.1 From Table 4.5, we observe that:

o We have the same phenomenon described in Remark 2.2.3 of Section 2.2, that

is, Cegr increases with s or with k.

o The 3-step, 10-stage HB method has the largest effective SSP coefficient, listed
in boldface, among the 4th-order HB methods on hand.
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Table 4.5: cog(HB(k,s,4)) for k =2,3,4,5 and s = 4,5,...,10.

s/k | HB(2,s,4) | HB(3,s,4) | HB(4,s,4) | HB(5,s,4)

4 0.398 0.461 0.483 0.494
5 0.452 0.504 0.508
6 0.488 0.512 0.514 0.515
7 0.532 0.534 0.536
8 0.553 0.554 0.554
9 0.586 0.587

10 0.610 0.614

o All of our new methods (except HB(2,4,4)) have greater c.g than those of the
hybrid methods listed in Table 4.6.

o As shown in Tables 4.5 and 4.6, RK(5,4) and RK(6,4) have smaller c.g than
those of HB(k,s,/) methods.

e For the same stage s, s =5,...,10, c.g(HB(k,s,4)) > cep(RK(s,4)).

In Table 4.6, we compare the efficiency of our methods computed by (2.2.2) in
Section 2.2 with some other methods. Although we do not compute the PEG between
HB methods and GL methods of the same order in the table, we saw that their c.g
are the same, and hence the PEG will be zero.

Figure 4.5 compares HB(3,s,4) and RK(s,4) on the basis of their effective SSP
coefficients as functions of their number of stages. Clearly, the new methods, generally,
have larger effective SSP coefficients, especially when the number of stages of both
methods is small.

From these tables and figure, our investigation to obtain HB(k,s,4) methods by
combining linear k-step methods and 4- to 10-stage RK methods of order 4, shows
that these new SSP methods have good SSP coefficients.
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Table 4.6: Lower right block: PEG(ceq) of HB(k,s,4) over HM(k,4) and

RK(s,4).
HB(5,4,4) | HB(3,5,4) | HB(5,6,4) | HB(3,7,4) | HB(2,8,4) | HB(3,9,4) | HB(2,10,4)
c 1.979 2.520 3.093 3.741 4.424 5.279 6.102
Ceff 0.494 0.504 0.515 0.534 0.553 0.587 0.610
HM(3,4) 0.494 | 0.247 80% 104% 109% 147%
HM (4,4) 0.682 | 0.341 45% 48% 51% 57% 79%
HM(5,4) 0.793 | 0.396 25% 27% 30% 35% 40% 54%
HM(6,4) 0.879 | 0.439 13% 15% 17% 22% 26% 34% 39%
RK(5,4) 1.508 | 0.302 64% 67% 1% 7% 83% 94% 102%
RK(6,4) 2.295 | 0.382 29% 32% 35% 40% 45% 54% 60%
RK(7,4) 3.321 | 0.474 4% 6% 9% 13% 17% 24% 29%
RK(8,4) 4.146 | 0.518 -5% -3% -1% 3% 7% 13% 18%
RK(9,4) 4.869 | 0.541 -9% -7% -1% 2% 9% 13%
RK(10,4) | 6.000 | 0.600 -8% -2% 2%

0.7
0.65}

o
o

0.55}

0.45Y7

Eff. SSP coeffs.
o
[6)]

I
~

0.35}

4 ‘ 6 8 10

Number of stages s

HB(3,s,4) o, RK(s,4) *

Figure 4.5: Effective SSP coefficients, c.¢, versus number of stages, s, of 3-step
HB(3,s,4) methods and RK(s,4) methods, including Ketcheson’s RK(10,4).
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In the next parts, we shall present some numerical results to confirm the valid-
ity of our new optimal schemes on two problems of inviscid Burgers’ equation with
different initial conditions: the first problem with a unit downstep initial condition
and the second with a square-wave initial condition.

However, instead of using the difference quotient (4.1.11) as a spatial discretiza-
tion, we shall use Weighted Essentially Non-Oscillatory (WENO) schemes.

In our research, we use WENO of order 5 (WENOb5), which was suggested by
Jiang and Shu in [19], and combine this finite difference scheme with SSP time dis-
cretization methods when we compare our SSP HB methods to other methods on
Burgers’ equation. The reason of using WENOS is the compatibility of orders between
our methods as time discretization methods and WENObS as a spatial discretization
method. Furthermore, this method is a very good choice as Shu suggested in [52].

kool CORRECTIONS FOLLOWED REPORTS ##tksoksttoksesksftoksekf bk ok
There are many studying about finite volume and finite difference WENObS when com-
bining with SSP methods (see [32, 19, 52, 61]). Recently, Wang and Spiteri in [60]
proved theoretically and numerically the linear instability of first- and second-order
SSP RK methods when coupled with WENOS5. Moreover, they showed that it is suf-
ficient to include the part of imaginary axis in the linear stability domain of explicit
RK methods such as SSP RK of order three. However, in 2011, Motamed, Macdon-
ald and Ruuth in [34] pointed out that inclusion of imaginary axis is not a necessary
condition. They also illustrated that the time discretization methods, which do not

satisfy this condition, are suitable when combining with WENOS5.
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4.2.2 Numerical results with WENOS5 spatial discretization
A. Burgers’ equation with a unit downstep initial condition

Consider Problem 1 with (4.1.9) (page 72). First we discretize the spatial derivative
of the flux function f(u) = u(z,t)?/2 by WENO5 of Jiang and Shu [19] with the

spatial step size Az = 1/150 to obtain the semi-discrete system

%uj(t) = _Aix [fj+(1/2) - fjf(1/2)} ) (4.2.1)
where u;(t) ~ u(z;,t) with z; = jAz, j = —150,—-149,...,149,150, and fj;a1/2)
is the numerical flux, which typically is a Lipschitz continuous function of several
neighboring values () (see [19] for details). Now a time discretization can be applied
to (4.2.1). For Problem 1, we consider the total variation norm of the numerical
solution at tg,. = 1.8 and take At sufficiently small such that (4.1.4) holds with
e = 95.0e-02.

The numerical results show that the FE method satisfies the TVD property

(4.1.3) under the time step restriction

The numes(HB(k,s,4)), for s = 4,5,...,10, as a function of s for this problem are
listed in Table 4.7.

The largest effective CFL numbers, num.g, of several HB(k,s,4) and HM(k,4) for
k =3,...,6 and RK(10,4) applied to Problem 1 (page 72) are listed and compared
in Table 4.8. The lower right block lists the PEG(ce) of HB(k,s,4) over the other

methods on hand.

Remark 4.2.2

o HB(k,s,4) have larger num.g than HM methods and RK(10,4), thus every per-

centage efficiency gain in Table 4.9 is positive.
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Table 4.7: numeg(HB(k,s,4)) for HB(k,s,4) applied to Problem 1.

s/k || HB(2,s,4) | HB(3,s,4) | HB(4,s,4) | HB(5,5,4)

4 0.390 0.365 0.380 0.380
) 0.385 0.405 0.395
6 0.430 0.440 0.420 0.421
7 0.421 0.426 0.421
8 0.370 0.375 0.377
9 0.360 0.365

10 0.350 0.360

o Among HB schemes, although HB(2,10,4) has the largest c.g = 0.610 (see Ta-
ble 4.5), it has the smallest num.g when applied to Problem 1.

e HB(3,6,4) has the greatest num.g among the HB(k,s,4) methods listed in Table
47

B. Burgers’ equation with a square-wave initial condition

In the next comparison, we consider again the fourth of Laney’s five test problems
27, p. 312], that is Problem 2 (page 76).

We use the same procedure as in Problem 1, that is we discretize the spatial
derivative of Problem 2 by WENOb5 and compute the total variation of the numerical
solution as a function of the effective CFL number, (4.1.5) at tg,.. However, for
Problem 2, tg,. = 0.6 and obtained numeg(FE)=0.183 in (4.2.2) instead of 0.325.

In Table 4.9, we list nume.g(HB(k,s,4)) for s = 4,5,...,10 and k = 2,...,5 for
HB(k,s,4) applied to Problem 2.

The numeg of HB(k,s,4), HM(k,4) and RK(10,4) applied to Problem 2 are listed
in Table 4.10. The lower right block shows PEG(ces) of HB(k,s,4) over the other
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Table 4.8: Lower right block: PEG(numeg) of HB(k,s,4) over HM(k,4) and
RK(10,4) and ratio Ryum/theor for HB(k,s,4), HM(k,4) and RK(10,4) applied
to Problem 1.

HM(3,4) | HM(4,4) | HM(5,4) | HM(6,4) | RK(10,4)

nUmeg 0.214 0.264 0.329 0.274 0.346

Rpum /theor 2.666 2.382 2.553 1.918 1.774

HB(2,4,4) | 0.390 3.013 82% 48% 19% 42% 13%
HB(3,4,4) | 0.365 2.437 1% 38% 1% 33% 5%
HB(2,5,4) | 0.385 2.623 80% 46% 17% 41% 11%
HB(3,6,4) | 0.440 2.647 101% 63% 31% 57% 24%
HB(4,7,4) | 0.421 2.434 97% 60% 28% 54% 22%
HB(4,8,4) | 0.377 2.092 76% 43% 15% 38% 9%
HB(2,9,4) | 0.360 1.891 68% 36% 9% 31% 4%
HB(2,10,4) | 0.350 1.765 64% 33% 6% 28% 1%

Table 4.9: num.¢(HB(k,s,4)) for HB(k,s,4) applied to Problem 2.

s/k || HB(2,s,4) | HB(3,s,4) | HB(4,5,4) | HB(5,5,4)
4 0.405 0.350 0.375 0.375
) 0.410 0.405 0.395
6 0.415 0.435 0.451
7 0.446 0.441 0.450
8 0.400 0.410 0.410
9 0.400 0.405
10 0.390 0.390
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Table 4.10: Lower right block: PEG(numcg) of HB(k,s,4) over HM(k,4) and
RK(10,4) and ratio Ryum/theor for HB(k,s,4), HM(k,4) and RK(10,4) applied
to Problem 2.

HM(3,4) | HM(4,4) | HM(5,4) | HM(6,4) | RK(10,4)

Numeg \ NUMeg 0.210 0.280 0.310 0.204 0.371

Ry /theor\ Raum /theor 4.638 4.480 4.265 2.532 3.373

HB(2,4,4) 0.405 5.548 93% 45% 31% 99% 9%
HB(3,4,4) 0.350 4.144 67% 25% 13% 2% -0.1%
HB(2,5,4) 0.410 4.953 95% 46% 32% 101% 11%
HB(3,6,4) 0.435 4.640 107% 55% 40% 113% 17%
HB(4,7,4) 0.450 4.584 114% 61% 45% 121% 21%
HB(2,8,4) 0.400 3.946 91% 43% 29% 96% 8%
HB(2,10,4) 0.390 3.487 86% 39% 26% 91% 5%

methods on hand.

Remark 4.2.3

e For Problem 2, the num.g(HB(k,s,4)) listed in Table 4.8, except for HB(3,4,4)=0.350,
are larger than the num.g of HM(k,4) and RK(10,4) listed in Table 4.10.

o Although, according to Table 4.5, HB(2,5,4) has smaller c.g than HB(3,8,4),
HB(4,8,4), it is shown in Table 4.8 that they have the same num.g when applied
to Problem 2. Similarly, although HB(3,5,4) has smaller c.g than HB(3,9,4),

they also have the same numeg when applied to Problem 2.

o Among the HB(k,s,4) methods, HB(3,6,4) and HB(4,6,4) have the highest num.g

for Problems 1 and 2, respectively.

To sum up, we extend the Shu-Osher form for Runge-Kutta methods [53] to a
Shu-Osher form for HB methods. Moreover, under this form, new series of optimal,

explicit, k-step, s-stage, SSP Hermite-Birkhoff methods, HB(k,s,4), of order 4 for
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s = 4,5,...,10, with nonnegative coefficients are obtained by combining linear k-
step methods with 4- to 10-stage Runge—Kutta methods of order 4. Although some
methods, such as HM, GL, and RK methods of the same order, have been found in
the literature, HB methods have better SSP coefficients and larger maximum effective

CFL numbers when tested on Burgers’ equation.

4.3 Canonical SSP 8-stage HB methods of order p
and WENO5

In this subsection, we construct canonical optimal, 8-stage, explicit SSP HB methods
of orders 4 to 12, HB(k,8,p), with nonnegative coefficients by combining linear k-step
methods of order (p — 3) with an 8-stage RK method of order 4 (see also [41] for the
case of non-canonical, 7-stage SSP HB methods) .

We perform an integration from ¢, to t,1 by a set of 8 formulae of 8-stage HB
methods defined by (2.1.1)—(2.1.2) in Section 2.1 with s = 8.

Using the optimization problem (2.1.75) and the inequalities (2.1.76)—(2.1.83)
together with the order conditions (2.1.4)—(2.1.10) corresponding to s = 8, we obtain
optimal HB schemes.

The first part of this section, Subsection 4.3.1, presents the construction of the
new methods as well as comparing the SSP coefficients and effective SSP coefficients
of the new methods with other methods. The numerical verification of the order
of the new methods is presented in the next subsection. Subsection 4.3.3 gives the
numerical results when the new methods are applied on Burgers’ equation and linear
advection equation to confirm their efficiency. The Appendix A.3 lists the canonical
Shu—Osher form of nine of the 29 new 8-stage HB(k,8,p) methods with lowest k for
given p (except for HB(8,8,11) and HB(8,8,12)), their ¢(HB(k,8,p)), ces(HB(k,8,p))

and abscissa vector o = [cy, ¢a, . . .].
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4.3.1 Effective SSP coefficients, c.g, of 8-stage HB(%,8,p)

In [23], Ketcheson, Gottlieb and Macdonald found two-step 8-stage RK methods
of order 6 with c.g(TSRK(8,6)) = 0.242. We found the best HB(k,8,6) with k& =
2,3,4,5,6. Moreover, HB(6,8,6) has largest c.(HB(6,8,6)) = 0.341 among the 8-
stage sixth-order HB methods.

Ketcheson, Gottlieb and Macdonald [23] found two-step 8-stage RK methods
of order 7 with c.g(TSRK(8,7)) = 0.071. We have not found HB(2,8,7) since there
is no feasible solution the optimization problem with fmincon function of Matlab
Optimization Toolbox. However, increasing the step number to k = 3,4,5, we find
HB(k,8,7) with larger SSP coefficients.

Two-step RK methods of order 6 to 8 with nonnegative coefficients with more
stages are found in [23]. Among these, the following methods have the best ef-
fective SSP coefficients, cof(TSRK(12,6)) = 0.365, ce(TSRK(12,7)) = 0.231, and
cet(TSRK(12,8)) = 0.078,

It is not mentioned in [23] that two-step 8- to 10-stage RK methods of order 8
exist. Our investigation shows that a 4-step, 8-stage HB method of order 8 exists and
has a fairly good effective SSP coefficient, c.q(HB(4,8,8)) = 0.192.

Although we have not found any SSP general linear methods of order 9 to 12
with nonnegative coefficients in the literature, our study indicates that HB(5,8,9),
HB(6,8,10), HB(7,8,11) and HB(8,8,12) exist with a low step number k and have fairly
good SSP coefficients, c.s(HB(5,8,9)) = 0.153, ce(HB(6,8,10)) = 0.141, cos(HB(7,8,11))
is 0.110 and c.s(HB(8,8,12)) = 0.091, respectively.

According to our numerical search, it seems that HB(k,8,p) methods of order
6 to 12 with nonnegative coefficients require at least k& = 2,3,4,5,6,7 steps with
cerf(HB(2,8,6)) = 0.240, cog(HB(3,8,7)) = 0.229, cor(HB(4,8,8)) = 0.192, c.q(HB(5,8,9))
is 0.153, ce(HB(6,8,10)) = 0.141, c.g(HB(7,8,11)) = 0.110 and c.(HB(7,8,12)) =
0.055, respectively.
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Our best k-step methods of orders 6 to 12 are with £k =2,3,....,6, k = 3,4,5,6,
k=4,5...,8 k=5,6,7,8 k=78 k="7,8and k = 7,8, respectively.

Table 4.11 lists ¢c(HB(%,8,p)), cer(HB(E,8,p)), and ¢(OM(k,p)), ceg(OM(k,p)) for
the other methods on hand, and column 8 shows the PEG (ceg(HB(%,8,p)), cer(OM(£,8,p))
computed by (2.2.2).

Remark 4.3.1 From Table /.11, we observe that:

e QOur best methods of order 4 are HB(2,8,4) and HB(3,8,4) and of order 5 is
HB(2,8,5) with c.g(HB(2,8,5)) = ceg( TSRK(8,5)).

o The characteristic of c.g follows Remark 2.2.3 in Section 2.2. Therefore, among
the obtained HB(k,8,p), the methods, which have the largest and smallest cg are
HB(3,8,4) and HB(7,8,12), respectively.

o All of the HB methods have greater c.g than those of GL and HM methods of

the same order, which implies that the corresponding PEG are positive.

e We have not found any SSP general linear methods of order 9 to 12 with non-
negative coefficients in the literature. But our study indicates that there are SSP
HB methods of order 9 to 12 with low step number and fairly good effective SSP
coefficients (see Table 4.11).

e For the same step number, the same order and the same stage number, TSRK
methods are slightly better than HB methods. However, if we increase the step
number k = 3,4,5,6, we find that HB(k,8,p) have larger effective SSP coeffi-
cients c.g. This is the advantage of increasing the step number. For instance,
ce(HB(2,8,6)) = 0.240 is smaller than c.z( TSRK(S8,6)) = 0.242, yet when k
increases, ceg(HB(k,8,6))) increase and are larger than c.g( TSRK(S,6)).

o The last column of Table 4.11 shows that our methods are better than others
except for RK(10,4) and TSRK(8,4).
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Table 4.11: PEG(ceg(HB(%,8,p)), cer(OM(k,p))) for HB(k,8,p) and OM(k,p)

taken row-wise.

HB(k,8,p) | c(HB(k,8,p)) | cert(HB(k,8,p)) OM(k,p) c(OM(k,p)) | cest(OM(k,p)) PEG
4 HB(2,8,4) 4.424 0.561 GL(2,4) 1.590 0.398 41 %
HB(3,8,4) 4.431 0.562 GL(3,4) 1.840 0.461 22 %
B B » GL(4,4) 1.930 0.483 16 %
» » HM(3,4) 0.494 0.247 127 %
» » » HM(4,4) 0.682 0.341 65 %
» ” » HM(5,4) 0.793 0.396 42 %
” ” » HM(6,4) 0.879 0.439 28 %
” ” » HM(7,4) 0.938 0.469 20 %
” ” ” RK(5,4) 1.508 0.302 86 %
» » " RK(8,4) 4.146 0.518 8 %
” ” » RK(10,4) 6.000 0.600 -6 %
» » » TSRK(8,4) 4.496 0.562 0%
5 HB(2,8,5) 3.579 0.447 HM(4,5) 0.371 0.185 142 %
» » " HM(5,5) 0.525 0.262 71 %
” ” » HM(6,5) 0.657 0.328 32 %
» » » HM(7,5) 0.746 0.373 20 %
” ” ” RK(9,5) 2.696 0.300 49 %
» ” » RK(10,5) 3.395 0.339 32 %
» » " TSRK(8,5) 3.576 0.447 0%
6 HB(2,8,6) 1.924 0.240 HM(5,6) 0.209 0.104 131 %
HB(3,8,6) 2.621 0.328 » » » 215 %
HB(4,8,6) 2.687 0.336 ” ” ” 223 %
HB(5,8,6) 2.714 0.339 n » » 226 %
HB(6,8,6) 2.727 0.341 ” » ” 229 %
» » » HM(6,6) 0.362 0.181 88 %
” ” » HM(7,6) 0.440 0.220 55 %
” ” TSRK(8,6) 1.936 0.242 41 %
7 HB(3,8,7) 1.828 0.229 HM(7,7) 0.234 0.117 96 %
HB(4,8,7) 2.243 0.280 » » 139 %
HB(5,8,7) 2.279 0.285 ” ” ” 144 %
HB(6,8,7) 2.284 0.285 ” » ” 144 %
» ” » TSRK(8,7) 0.568 0.071 302 %
8 HB(4,8,8) 1.538 0.192 HM(7,7) 0.234 0.117 64 %
HB(5,8,8) 1.851 0.231 » » ” 97 %
HB(6,8,8) 1.863 0.233 ” » ” 99 %
HB(7,8,8) 1.866 0.233 » » » 29 %
HB(8,8,8) 1.867 0.233 » » ” 29 %
» » n TSRK(12,8) 0.936 0.078 199 %
9 HB(5,8,9) 1.223 0.153 HM(7,7) 0.234 0.117 31 %
HB(6,8,9) 1.527 0.191 » ” 63 %
HB(7,8,9) 1.646 0.206 » » ” 76 %
HB(8,8,9) 1.682 0.210 » » 79 %
10 || HB(6,8,10) 1.129 0.141 HM(7,7) 0.234 0.117 21 %
HB(7,8,10) 1.365 0.170 » » 45 %
HB(8,8,10) 1.411 0.176 ” » ” 50 %
11 || HB(7,8,11) 0.878 0.110
HB(8,8,11) 1.014 0.127
12 || HB(7,8,12) 0.442 0.055
HB(8,8,12) 0.725 0.091
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o c.f(HB(k,8,p)) for p = 11,12 are not high when compare to other methods in
the same family because of their orders are very high. In fact, as the order p in-
creases, the number of constraints in optimization problem (2.1.36) or (2.1.75),
which leads effective SSP coefficients, c.p decreases. However, they are better
than cog( TSRK(12,8)) = 0.078 except HB(7,8,12), even though they have higher

order.

4.3.2 Numerical verification of the order p of HB(k,8,p)

To show the relevance of the theoretical order of HB(k,8,p) when solving ODEs, we
apply these methods with various constant stepsizes on the following system of five

equations over t € [0, t,] with the given initial value at t, = 0 and exact solution y;(¢):

Y ==Y, n(0)=1, wnt)=c,

Yo = Y3, y2(0) =0, yo(t) = sint,

) = cost, (4.3.1)
)

)

In Fig. 4.6, the error at t,, = 4x for the first two graphs and t,, = 8+ for the last
graph, is plotted for different stepsizes h in a log-log scale so that the curve appears
as a straight line with slope p whenever the leading term of the error of y, and y;5 is

of order p, that is,

maX{|y27n - yQ(tn>|a ‘yB,n - y5(tn)‘} = O(hp)a

in the maximum norm.
FRR RO CORRECTION FOLLOWED THE REPORTS FFH# ¥ sk dtor koo

The equations of these straight lines with their slopes are shown in Table 4.12.



4.3. Canonical SSP 8-stage HB methods of order p and WENO5

93

K p=3.89947 ' s Prr 01202

Ioglo(global error)
|
N
Ioglo(global error)
|
4

p=4.9267 ————p=7.70867
-5 -8
-6 -9 p=8.74280
-7 . : ‘ -10 s ‘ ‘
-0.8 -0.6 -0.4 -0.2 0 -0.8 -0.6 -0.4 -0.2 0
log, ,(h) log, ,(h)
-6
-7
5 -8
@
s -9
Qo
©
o -10
i
8 -1
-12
<--p=12.2513
-13 . . A
-1 -0.8 -0.6 -0.4 -0.2

log, o(h)

HB(2,8,4) *, HB(2,8,5) <, HB(2,8,6) +
HB(3,8,7) O, HB(4,8,8) x , HB(5,8,9) v
HB(7,8,10) A, HB(7,8,11) <, HB(7,8,12) o

Figure 4.6: log,( error) versus log,, h at t,, for the listed HB(%,8,p) methods
applied to Problem (4.3.1) over t € [0,t,] with constant stepsizes.
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Table 4.12: Slope and Equations of lines corresponding to method HB(k,8,p)
in Figure 4.6

Method HB(k,8,p) | Slope Equations of lines
HB(2,8,4) 3.89947 | y = 3.89947x — 0.84744
HB(2,8,5) 4.92670 | y = 4.92670x — 1.62155
HB(2,8,6) 5.92149 | y = 5.92149x — 2.49456
HB(3,8,7) 7.01262 | y = 7.01262z — 3.00300
HB(4,8,8) 7.70867 | y = T7.70867x — 2.82587
HB(5,8,9) 8.74280 | y = 8.74280x — 3.21337
HB(7,8,10) 9.79819 | y = 9.79819x — 3.37169
HB(7,8,11) 10.7461 | y = 10.7461x — 3.41112
HB(7,8,12) 12.2513 | y = 12.2513x — 3.60680

As in Fig. 4.6 and Table 4.12, the slopes of the straight lines which approximate
the data in the least-squares sense are very close to p of HB(k,8,p) for p =4,5,...,12,

which confirms the orders of the methods.

koot sk okook sk okok ok skoskook sk kR sk kok sk sk skok sk kok sk kokosk sk skok sk kok skokoskosk sk skok sk kok sk skokosk skokok sk kokosk skokok skokokoskokokoskoskokokoskokokskokokskok

4.3.3 Numerical results
A. Burgers’ equation with a unit downstep initial condition

We continue to consider Problem 1 (page 72). Discretizing the spatial derivative by
WENO5 first, then we apply our new methods as time discretization. We take At
sufficiently small, At < max At such that (4.1.4) holds with error € = 5.0e-02 at
thnal = 1.8.

The numerical results show that the FE method satisfies the TVD property
(4.1.3) under time step restriction (4.2.2): At < Atpg = 0.325Az.
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Table 4.13 presents numes(HB(%,8,p)) of HB methods and num.s(OM(k,p)) for
other methods (OM) on hand applied to Problem 1 and the
PEG (numes(HB(k,8,p)), numeg(OM(k,p))) is shown in column 8.

Remark 4.3.2 From Table 4.13, it 1s seen that:

o Generally, HB methods have larger num.g( HB(k,8,p) than other methods of the

same order, so most PEG in the last column are positive.

o Quite remarkably, although c.z(HB(3,8,4) is smaller than c.z(RK(10,4)), its
numeg is larger than that of RK(10,4).

o Similarly, c.y(HB(7,8,11) is smaller than c.g(HM(7,7), but its numeg is larger
than that of HM(7,7).

B. Burgers’ equation with a square-wave initial condition

In the next comparison, our Problem 2 (page 76) is the fourth of Laney’s five test
problems [27, p. 312], that is, Burgers’ equation with a square-wave initial condition,

We discretize the spatial derivative of Problem 2 by WENO5 and compute the
total variation of the numerical solution as a function of the effective CFL number
at tana = 0.6. In this case, num.g(FE)=0.325 in the time step restriction (4.2.2) is
replaced by numg(FE)=0.183.

Remark 4.3.3 Table 4.1/ has the same characteristics as in Remark 4.3.2 for Ta-
ble 4.13. Moreover:

e Forp =12, HB(7,8,12) has the largest ratio Rpumtheor, despite its small num,.g.

e For Problem 1, numeg(HB(2,8,4)) < numeg(GL(2,4)), but num.s(HB(2,8,4)) >
numeg( GL(2,4)) for Problem 2.
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Table 4.13: PEG(num.z(HB(%,8,p)), numeg(OM(k,p))) and ratio Ruum /theor
for Problem 1.

HB(k,8,p) numeer(HB(k,8,p)) Ryum /theor OM(k,p) numeer(OM(k,p)) Ruum/theor PEG
4 HB(2,8,4) 0.384 2.104 GL(2,4) 0.390 3.019 -2 %
HB(3,8,4) 0.389 2.128 GL(3,4) 0.365 2.442 7%
” ” ” GL(4,4) 0.380 2.423 2%
” ” ” HM(3,4) 0.214 2.666 82 %
» » HM(4,4) 0.264 2.382 47 %
” ” ” HM(5,4) 0.329 2.553 18 %
7 ” ” HM(6,4) 0.274 1.918 42 %
” ” ? HM(7,4) 0.299 1.962 30 %
7 ” 7 RK(5,4) 0.311 3.173 25 %
” ” 7 RK(10,4) 0.346 1.774 12 %
5 HB(2,8,5) 0.334 2.297 HM(4,5) 0.182 3.019 84 %
” ” ? HM(5,5) 0.277 3.247 21 %
» » HM(6,5) 0.277 2.594 21 %
” ” 7 HM(7,5) 0.317 2.615 5%
” ” ” RK(10,5) 0.324 2.933 3%
6 HB(2,8,6) 0.305 3.902 HM(5,6) 0.174 5.123 75 %
HB(3,8,6) 0.315 2.958 ” ” ” 81 %
HB(4,8,6) 0.300 2.748 » » » 72 %
HB(5,8,6) 0.285 2.585 ” ” ” 64 %
7 ” 7 HM(6,6) 0.169 2.873 69 %
” ” ? HM(7,6) 0.189 2.643 51 %
7 HB(3,8,7) 0.295 3.972 HM(7,7) 0.127 3.340 132 %
HB(4,8,7) 0.270 2.963 ” ” ” 113 %
HB(5,8,7) 0.230 2.484 » » » 81 %
HB(6,8,7) 0.250 2.694 ” ” ? 97 %
HB(7,8,7) 0.230 2.479 ” ” ” 81 %
8 HB(4,8,8) 0.230 3.681 HM(7,7) 0.127 3.340 81 %
HB(5,8,8) 0.280 3.724 ” ” ” 120 %
HB(6,8,8) 0.260 3.435 ” ” ” 105 %
HB(7,8,8) 0.270 3.667 ” ” ” 113 %
HB(8,8,8) 0.290 3.823 ? ? ” 128 %
9 HB(5,8,9) 0.240 2.516 HM(7,7) 0.127 3.340 89 %
HB(6,8,9) 0.260 4.191 ” ” ” 105 %
HB(7,8,9) 0.275 4.113 ” ” ” 117 %
HB(8,8,9) 0.270 3.951 ? ” ” 113 %
10 || HB(7,8,10) 0.215 3.877 HM(7,7) 0.127 3.340 69 %
HB(8,8,10) 0.235 4.099 ” ” ” 85 %
11 || #HB(7,8,11) 0.200 5.607 HM(7,7) 0.127 3.340 57 %
HB(8,8,11) 0.195 4.734 ” ” ” 54 %
12 || HB(7,8,12) 0.105 5.848
HB(8,8,12) 0.125 4.244
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Table 4.14: PEG(num.s(HB(k,8,p)), numeg(OM(k,p)), and ratio Ruum/theor
for Problem 2.

HB(k,8,p) | numeg(HB(k,8,p)) | Ryum/theor OM(k,p) | numes(OM(Kk,p)) | Ruyum/theor PEG
4 HB(2,8,4) 0.426 4.143 GL(2,4) 0.405 5.559 5 %
HB(3,8,4) 0.421 4.087 GL(3,4) 0.350 4.151 20 %
” GL(4,4) 0.375 4.240 12 %
” HM(3,4) 0.210 4.638 100 %
» HM (4,4) 0.280 4.480 50 %
» HM(5,4) 0.310 4.265 36 %
” HM(6,4) 0.305 3.786 38 %
» HM(7,4) 0.330 3.839 28 %
” RK(5,4) 0.306 5.535 38 %
” RK(10,4) 0.371 3.373 13 %
5 HB(2,8,5) 0.345 4.207 HM(4,5) 0.192 5.647 80 %
» HM(5,5) 0.292 6.069 18 %
” HM(6,5) 0.287 4.766 20 %
” HM(7,5) 0.312 4.563 11 %
” RK(10,5) 0.324 5.200 6 %
6 HB(2,8,6) 0.265 6.011 HM(5,6) 0.179 9.345 18 %
HB(3,8,6) 0.335 5.578 » » » 87 %
HB(4,8,6) 0.285 2.030 ” ” ” 59 %
HB(5,8,6) 0.300 4.824 » » » 68 %
” HM(6,6) 0.174 5.245 72 %
» HM(7,6) 0.194 4.811 55 %
7 HB(3,8,7) 0.295 7.043 HM(7,7) 0.124 5.782 138 %
HB(4,8,7) 0.265 4.304 » » » 114 %
HB(5,8,7) 0.227 4.347 » » » 83 %
HB(6,8,7) 0.243 4.643 ” ” ” 96 %
HB(7,8,7) 0.245 4.682 » » » 98 %
8 HB(4,8,8) 0.219 6.215 HM(7,7) 0.124 5.782 7%
HB(5,8,8) 0.279 6.578 » » » 125 %
HB(6,8,8) 0.254 5.950 ” ” ” 105 %
HB(7,8,8) 0.249 5.824 » » » 101 %
HB(8,8,8) 0.255 5.961 ” ” ” 106 %
9 HB(5,8,9) 0.229 8.172 HM(7,7) 0.124 5.782 85 %
HB(6,8,9) 0.224 6.402 ” ” ” 81 %
HB(7,8,9) 0.260 6.894 » » » 110 %
HB(8,8,9) 0.254 6.591 ” ” ” 105 %
10 || HB(6,8,10) 0.115 4.446 HM(7,7) 0.124 5.782 T %
HB(7,8,10) 0.214 6.842 ” ” ” 73 %
HB(8,8,10) 0.232 7.176 » » » 87 %
11 || HB(7,8,11) 0.169 8.401 HM(7,7) 0.124 5.782 36 %
HB(8,8,11) 0.204 8.781 » » ” 65 %
12 || HB(7,8,12) 0.114 11.257
HB(8,8,12) 0.110 6.622
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o Most of the HB methods have larger numeg( HB(k,8,p)) than those of other meth-
ods of the same order, so most PEG in the last column are positive. This con-

firms the results shown in Table 4.135.

o The ratio Ryum/theor of HB(k,8,p) for Problems 1 and 2 shown in Tables 4.13
and 4.1/, respectively, are all much greater than 1. Therefore, the theoretical
strong stability bounds of HB(k,8,p) are verified in the numerical comparison of

the mazimum time steps for the two problems.

C. Linear advection equation with a square-wave initial condition

In this part, the last problem we use as test problem is the second of Laney’s five test

problems [27, p. 311].
Problem 3 Linear advection equation with a square-wave initial condition,

9 Lozl <5
—u(z,t) =0, wu(z,0)= (4.3.2)
0, 3<lz|<1,

and periodic boundary condition u(—1,t) = u(1,t) fort > 0.

Similar to Problems 1 and 2, we use WENObH as spatial discretization for the
flux function f(u) = u(z,t) and compute the total variation of the numerical solution
as a function of the effective CFL number at tg,, = 4 and numeg(FE)=0.033. At

t = 4, the initial condition moves around the periodic domain [—1, 1] twice so that

u(x,4) = u(x,0). Results are in Table 4.15.

Remark 4.3.4 From Table 4.15, we observe that:

o At first glance, we see that the 1atios Ry sineor are especially large since numeg(FE)

is so small (0.033).
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Table 4.15: PEG(num.g(HB(%,8,p)), numeg(OM(k,8,p)) and ratio Ruum /theor
for Problem 3.

HB(k,8,p) numeer(HB(k,8,p)) Ryum /theor OM(k,p) numeer(OM(k,p)) Ruum/theor PEG

4 HB(2,8,4) 0.380 20.507 GL(2,4) 0.350 26.682 9 %
HB(3,8,4) 0.385 20.741 GL(3,4) 0.375 24.704 3%

” GL(4,4) 0.395 24.808 -3 %

” HM(3,4) 0.225 27.604 71 %

” HM(4,4) 0.270 23.994 43 %

” HM(5,4) 0.335 25.603 15 %

HM(6,4) 0.275 18.961 40 %

” HM(7,4) 0.300 19.384 28 %

7 RK(5,4) 0.340 34.161 13 %

» RK(10,4) 0.345 17.424 12 %

5 HB(2,8,5) 0.340 23.030 HM(4,5) 0.150 24.504 127 %
” HM(5,5) 0.265 30.592 28 %

7 HM(6,5) 0.150 13.837 127 %

» HM(7,5) 0.330 26.810 3%

” RK(10,5) 0.319 28.473 7%

6 HB(2,8,6) 0.325 40.950 HM(5,6) 0.150 43.497 117 %
HB(3,8,6) 0.305 28.210 ” ” ” 103 %
HB(4,8,6) 0.335 30.224 » » » 123 %
HB(5,8,6) 0.340 30.370 ” ” ” 127 %

7 HM(6,6) 0.185 30.973 84 %

” HM(7,6) 0.205 28.237 66 %

7 HB(3,8,7) 0.290 38.459 HM(7,7) 0.180 46.620 61 %
HB(4,8,7) 0.315 34.045 ” ” ” 75 %
HB(5,8,7) 0.325 34.571 ” ” ” 81 %
HB(6,8,7) 0.320 33.965 ” ” ? 78 %
HB(7,8,7) 0.325 34.496 ” ” ” 81 %

8 HB(4,8,8) 0.220 34.677 HM(7,7) 0.180 46.620 22 %
HB(5,8,8) 0.305 39.946 ” ” ” 69 %
HB(6,8,8) 0.305 39.688 ” ” ” 69 %
HB(7,8,8) 0.300 38.975 ” ” ” 67 %
HB(8,8,8) 0.310 40.253 ” ” ” 72 %

9 HB(5,8,9) 0.275 54.511 HM(7,7) 0.180 46.620 53 %
HB(6,8,9) 0.295 46.834 ” ” ” 64 %
HB(7,8,9) 0.285 41.975 ” ” ” 58 %
HB(8,8,9) 0.285 41.077 ? ? ” 58 %

10 HB(6,8,10) 0.235 50.460 HM(7,7) 0.180 46.620 31 %
HB(7,8,10) 0.295 52.392 ” ” ” 64 %
HB(8,8,10) 0.290 49.825 ” ” ” 61 %

11 HB(7,8,11) 0.210 57.983 HM(7,7) 0.180 46.620 17 %
HB(8,8,11) 0.205 49.011 ” ” ” 14 %

12 HB(8,8,12) 0.215 71.891 ” ” ” 19 %
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e HB methods of order 12 have positive PEG for Problem 3, while they have
negative PEG for Problem 1 and 2.

o Once again, numeg(HB(k,8,p)) > num.g(RK(s,p)), so their PEG is positive.

o For Tables 4.13 and 4.14, HB methods of order 12 have smaller num.g than
other methods because of their much higher order; however, their numcg are

better to Problem 3 (see Table 4.15).

The new family of optimal, explicit, k-step, 8-stage, SSP HB methods of order
p, HB(k,8,p), for p =4,5,...,12, with nonnegative coefficients are presented in their
canonical Shu-Osher form. These new methods are constructed by combining lin-
ear k-step methods of order (p — 3) with 8-stage Runge-Kutta methods of order 4.
The numerical results show that our methods are more efficient than others. These

methods are shown as remarkable examples for chapter 4.



Chapter 5

SSP 8-Stage HB Methods Based
on Combining k-Step with RK5
Methods

In this chapter, to solve system (1.1.2), we consider explicit, SSP, k-step, 8-stage,
general linear methods of order p, p = 5,6,...,12, with nonnegative coefficients
based on combining linear k-step methods of order (p—4) and an 8-stage RK method
of order 5. This family is the best family in HBrgs(k, s, p) methods (see Table 3.8).

The 8 formulae of these 8-stage HB methods to perform the integration from
tn to t,41 are defined in Chapter 2 by (2.1.1) and (2.1.2) with s = 8. Their order
conditions are (3.1.2)—(3.1.15) with s = 8. In the case of p = 5, HB(k,s,5) has to
satisfy the additional condition (3.1.17) in Chapter 4 with s = 8.

The Shu-Osher and Butcher form in vector notation of these canonical SSP HB
methods together with Theorem 2.1.11 to compute their feasible SSP coefficients are
studied in Subsections 2.1.6-2.1.8 with s = 8.

Section 5.1 presents the construction of several new HB(%,8,p) methods obtained

by computer search and compares the effective SSP coefficients of our new methods

101
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with those of other methods. Section 5.2 considers the numerical verification of
the order p of HB(k,8,p). In Section 5.3, we present numerical results for our new
methods and other methods applied to Burgers’ equations to confirm the efficiency of
the new methods. The formulae of eight of the 24 new HB(k,8,p) methods are listed
in their Shu—Osher representation together with their ¢(HB(k,8,p)), cs(HB(k,8,p))

and abscissa vector ¢ in Appendix A 4.

5.1 Construction of 8-stage HB(%,8,p)

The problem of optimizing HB(k,8,p) in Subsection (3.1.9) can be formulated from
(2.1.75) to (2.1.83) together with the set of order conditions (3.1.2)—(3.1.15) with
s = 8. Especially, when p = 5, HB(k,8,5) needs to satisfy the additional condition
(3.1.17) in Chapter 4 with s = 8. We search for the methods with largest ¢(HB(k,8,p))
for different values of k. In this work, fmincon function in the MATLAB Optimization
Toolbox was used to tolerance 107! on the objective function ¢(HB(%,8,p)) provided
all the constraints were satisfied to tolerance 10714,

The effective SSP coefficients, c.g(HB(k,8,p)), of the new methods and c.s(OM(k,p))
of the other methods (OM) on hand are compared in Table 5.1. With the same order
and the same stage, generally, any HB methods may need more storage than RK
methods. These HB(k,8,p) have fairly good c.q(HB(k,8,p)) and low step number k
for reduced storage implementation.

With p = 5, our best method of order 5 is HB(2,8,5) with ¢(HB(2,8,5)) = 3.579
and cos(HB(2,8,5)) = 0.447.

In [23], Ketcheson, Gottlieb and Macdonald found a two-step 8-stage RK method
of order 6 with c.g(TSRK(8,6)) = 0.242. We found HB(2,8,6) with similar c.g(HB(2,8,6)) =
0.241. If we further increase the step number k, we can find HB(%,8,6) with larger SSP
coefficients. We found the best HB(k,8,6) with £ = 2,3,4,5. Moreover, HB(5,8,6)
has the largest c.q(HB(5,8,6)) = 0.345 among the 8-stage sixth-order HB methods on
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hand. Here we note the advantage of increasing the step number k.

It is not mentioned in Ketcheson, Gottlieb and Macdonald [23] that two-step 8- to
10-stage RK methods of order 8 exist. We found HB(3,8,8) with good c.g(HB(3,8,8)) =
0.160.

We have not found in the literature general linear SSP methods of order 9 to
12 with nonnegative coefficients. However, we found the following HB(k,8,p) with

effective SSP coefficients:
cei(HB(4,8,9)) = 0.138,  cq(HB(5,8,10)) = 0.121,

cer(HB(7,8,11)) = 0.135,  coq(HB(7,8,12)) = 0.100.

According to our numerical search, it seems that HB(k,8,p) methods of order 9

to 12 with nonnegative coefficients require at least k = 3,4, 5,6 steps with
cei(HB(3,8,9)) = 0.035, c.r(HB(4,8,10)) = 0.043,

cer(HB(5,8,11)) = 0.060, cer(HB(6,8,12)) = 0.025.

Our best k-step methods of orders 7 to 12 are with k = 3,...,6, k= 3,...,7,
k=4,...,8, k=5,...,8 k=17,8, and k = 7,8, respectively.

We compare our new methods with others based on the notion of percentage ef-
ficiency gain (Definition 2.2.2) mentioned in Section 2.2. Table 5.1 lists ¢(HB(k,8,p)),
cet(HB(K,8,p)), and ¢(OM(k,p)), cex(OM(k,p)) for the other methods (OM) on hand.
Column 8 lists PEG(ceg(HB(E,8,p)), cer(OM(k,p))) which is seen to be non negligible.

Table 5.1 also shows that the new HB(k,8,p) are generally competitive with the

other methods on hand. For example,
o c.i(HB(2,8,5)) > cor(HM(E,5)), for k = 4,5,6,7.
o c.i(HB(2,8,5)) > cor(RK(s,5)), for s = 9, 10.

o cor(HB(K,8,.8)) > cer(HM(7,7)) = 0.117 for k = 3,4,5,6,7.
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Table 5.1: PEG(ces(HB(k,8,p)), cer(OM (K

p))) taken row-wise.

p || HB(k,8,p) | c(HB(k8,p)) | cer(HB(,8,p)) OM(k,p) c(OM(k,p)) | cer(OM(k,p)) PEG
5 || HB(2,8,5) 3.579 0.447 HM(4,5) 0.371 0.185 141 %
” ” ” HM(5,5) 0.525 0.262 70 %
” ” ” HM(6,5) 0.657 0.328 36 %
” » ” HM(7,5) 0.746 0.373 20 %
” ” ” RK(9,5) 2.696 0.300 49 %
” ” ” RK(10,5) 3.395 0.339 32 %
” ” ” TSRK(8,5) 3.576 0.447 0%
6 || HB(2,8,6) 1.928 0.241 HM(5,6) 0.209 0.104 131 %
HB(3,8,6) 2.621 0.328 ” » ” 213 %
HB(4,8,6) 2.732 0.341 » ” » 227 %
” ” ” HM(6,6) 0.362 0.181 89 %
” ” ” HM(7,6) 0.440 0.220 55 %
” ” ” TSRK(8,6) 1.936 0.242 41 %
7 || HB(3,8,7) 1.985 0.248 HM(7,7) 0.234 0.117 112 %
HB(4,8,7) 2.273 0.284 ” ” » 143 %
” ” ” TSRK(8,7) 0.568 0.071 300 %
8 || HB(3,8,8) 1.277 0.160 HM(7,7) 0.234 0.117 36 %
HB(4,8,3) 1.588 0.198 ” ” » 70 %
HB(5,8,8) 1.884 0.235 ” ” ” 101 %
HB(6,8,8) 1.930 0.241 ” » ” 106 %
HB(7,8,8) 1.943 0.243 » » » 108 %
” » ” TSRK(12,8) 0.936 0.078 211 %
9 || HB(4,8,9) 1.107 0.138 HM(7,7) 0.234 0.117 18 %
HB(5,8,9) 1.429 0.178 ” ” » 53 %
HB(6,8,9) 1.623 0.203 ” ” » 73 %
HB(7,8,9) 1.727 0.216 ” ” » 85 %
HB(8,8,9) 1.741 0.218 ” ” » 86 %
10 || HB(5,3,10) 0.971 0.121 HM(7,7) 0.234 0.117 4%
HB(6,8,10) 1.249 0.156 ” ” » 33 %
HB(7,3,10) 1.453 0.182 » » ” 55 %
HB(8,8,10) 1.492 0.186 ” ” » 59 %
11 || HB(7,8,11) 1.078 0.135 HM(7,7) 0.234 0.117 15 %
HB(8,8,11) 1.247 0.156 ” ” » 33 %
12 || HB(7,8,12) 0.801 0.100
HB(8,3,12) 0.930 0.116
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Table 5.2: cor(HB(E,8,p)) as function of step number k and order p.

p\k 2 3 4 5 6 7 8
0.447

5

6 0.241 0.328 0.341 0.345 0.347
7 *0.040 | 0.248 0.284 0.285
8

9

0.142 0.198 0.235 0.241 0.243
*0.035 0.138 0.179 0.203 0.216 | 0.218

10 *0.043 | 0.121 0.156 | 0.182 | 0.186
11 *0.060 | 0.106 | 0.135 | 0.156
12 *0.025 | 0.100 | 0.116

o cor(IB(K,8,9)) > con(HIM(7,7)) for k = 4,5,6,7, 8.
o coi(HB(E,8,p)) > cer(HM(7,7)) for k =5,6,7,8 and p = 10, 11.
e Generally, PEG(cos(HB(k,8,p)), cer(OM(k,p))) > 0.

Table 5.2 lists ceq(HB(K,8,p)) as a function of the step number k and the order
p. The nonstarred methods are listed in Table 5.1 and are fairly good methods. The
starred methods with rather small c.q(HB(k,8,p)) are not listed in Table 5.1.

5.2 Numerical verification of the order p of HB(%,8,p)

To show the relevance of the theoretical order of HB(k,8,p) when solving ODEs,
we have applied these methods with various constant stepsizes on the initial value
problem (4.3.1) in Chapter 4 over ¢t € [0, 7 + 8] with exact solution y;(t).

In Fig. 5.1, the error of y» and y; at ¢, = m + 8 is plotted for different stepsizes
h in a log-log scale so that the curves appear as straight lines with slope p whenever

the leading term of the error is of order p, that is

max{|yan — Y2(tn), [Ys.n — ys(tn)|} = O(AP).
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HB(2,8,5) o, HB(2,8,6) *, HB(3,8,7) +, HB(4,8,8) O (left figure)
HB(5,8,9) », HB(6,8,10) ¢, HB(7,8,11) v/, HB(7,8,12) A (right figure)

Figure 5.1: log,,( error) versus log,, h at t, = m + 8 for the listed HB(k,8,p)
methods applied to problem (4.3.1) over ¢ € [0, 7+ 8] with constant stepsizes.
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The equations of these straight lines with their slopes are shown in Table 5.3.

As in Fig. 5.1 and Table 5.3, the slopes of the straight lines which approximate

the data in the least-squares sense are very close to p of HB(k,8,p) for p = 5,6, ...,12,

which confirms the orders of the methods.
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It

is to be noted that HB(2,8,6) uses t,, = 47 instead of ¢, = 7 + 8.
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Table 5.3: Slope and Equations of lines corresponding to method HB(k,8,p)
in Figure 5.1

Method HB(k,8,p) Slope Equations of lines
HB(2,8,5) 4.97024 | y=4.97024x — 1.59360
HB(2,8,6) 5.94926 y = 5.94926x — 2.4775
HB(3,8,7) 6.93844 | y = 6.93844x — 2.63865
HB(4,8,8) 7.79865 | y = 7.79865x — 2.76336
HB(5,8,9) 8.86163 | y = 8.86163x — 3.43010
HB(6,8,10) 9.60631 | y =9.60631x — 3.61491
HB(7,8,11) 10.91865 | y = 10.91865x — 3.80284
HB(7,8,12) 11.69082 | y = 11.69082x — 4.35231

5.3 Comparing HB(%,8,p) with other methods on

Burgers’ equation

5.3.1 Comparing HB(%,8,p) with other methods on Burgers’

equation with unit downstep initial condition

As a first comparison of our new methods with RK methods, following Huang [17],
we consider Burgers’ equation in Problem 1 (page 72).

As in Sections 4.2 and 4.3 in Chapter 4, we use WENO5 as the spatial discretiza-
tion and our methods as time discretization.

It is also numerically observed that the TVD property (4.1.4) holds with error
€ = 5.0e — 02 for the methods listed in Table 5.4 with At < max At,um,. This confirms
the result of Theorem 2.1.11 that HB methods are also TVD when combined with
the WENOS space discretization since these new methods are convex combinations of

the forward Euler method. The same situation holds for Problem 2 (page 76) below.
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For Problem 1, Table 5.4 lists numeg in columns 3 and 6 and the ratio Ryum/theor
(computed by (4.1.7)) for HB(k,8,p) in column 4 and OM(k,p) (other methods) in
column 7. The PEG(numeg) is in column 8.

It is seen that:

(a) num.g(HB(%,8,p)) > numeg(OM(k,p)) for methods of the same order p and all
k,

(b) quite remarkably, even though c.s(HB(7,8,12))=0.100 < c.(HM(7,7)) = 0.117
and cor(HB(8,8,12))=0.116 < ceg(HM(7,7)) = 0.117, in this example, HB(7,8,12)
and HB(8,8,12) allow for a larger time step since numg(HB(7,8,12)) > numeg(HM(7,7))
and num.g(HB(8,8,12)) > num.(HM(7,7)),

(¢) PEG(numeg(HB(%,8,p)), numeg(OM(£,8,p))) > 0 for HB(k,8,p) and OM(k,p)

taken row-wise in all cases on hand.

5.3.2 Comparing HB(%,8,p) and other methods on Burgers’

equation with a square-wave initial condition

As a second comparison, we continue to consider Burgers’ equation with a square-
wave initial value in Problem 2 (page 76), which is one of Laney’s five test problems
27, p. 312].

Discretizing the spatial derivative of Problem 2 by WENOb5 and computing the
total variation of the numerical solution as a function of the effective CFL number,
numer = At/((Azx), at tgua = 0.6, we find numeg = 0.183.

Table 5.5 lists numeg in columns 3 and 6, and the ratio Ryum/theor I column 4
and column 7 for HB(k,8,p) and for OM(k,p) (other methods), respectively, applied
to Problem 2. The PEG(numeg) is in column 8.

It is seen that the results for Problem 2 listed in Table 5.5 confirm the observa-

tions (a)—(c) obtained for Problem 1 (page 72) as listed in Table 5.4.
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Table 5.4: PEG(num.g(HB(%,8,p)), numez(OM(k,8,p)) taken row-wise and
Ruyum/theor applied to Problem 1.

p | HB(ESp) | numea(HB(k.8p) | Ruumjtheor | OM(kp) | numeg(OM(K.p)) | Roumyineor | PEG
5 || HB(2,8,5) 0.336 2.311 HM(4,5) 0.182 3.019 85 %
” ” ” HM(5,5) 0.277 3.247 21 %

» » » HM(6,5) 0.277 2.594 21 %

» » » HM(7,5) 0.317 2.615 6 %

» » » RK(10,5) 0.324 2.933 4%

6 || HB(2,8,6) 0.311 3.970 HM(5,6) 0.174 5.123 79 %
HB(3,8,6) 0.316 2.968 ” ” ” 82 %
HB(4,8,6) 0.306 2.757 ” ” ” 76 %

» » » HM(6,6) 0.169 2.873 81 %

” ” ” HM(7,6) 0.189 2.643 62 %

7 || HB(3,8,7) 0.309 3.831 HM(7,7) 0.127 3.340 143 %
HB(4,8,7) 0.304 3.292 ” ” ” 139 %

8 || HB(3,8,8) 0.203 3.914 HM(7,7) 0.127 3.340 60 %
HB(4,8,8) 0.234 3.628 ” ” ” 84 %
HB(5,8,8) 0.249 3.253 ” ” » 96 %
HB(6,8,3) 0.289 3.686 » ” » 128 %
HB(7,8,3) 0.319 4.041 » » » 151 %

9 || HB(4,8,9) 0.148 3.290 HM(7,7) 0.127 3.340 17 %
HB(5,8,9) 0.238 4.099 ” ” ” 87 %
HB(6,8,9) 0.268 4.063 ” ” » 11 %
HB(7,8,9) 0.268 3.819 » ” ” 111 %
HB(8,8,9) 0.293 4.142 » » ” 131 %

10 || HB(5,8,10) 0.253 6.413 HM(7,7) 0.127 3.340 99 %
HB(6,8,10) 0.163 3.213 ” ” ” 28 %
HB(7,8,10) 0.288 4.879 ” ” ” 127 %
HB(8,8,10) 0.288 4.751 ” ” ” 127 %

11 || HB(7,8,11) 0.165 3.766 HM(7,7) 0.127 3.340 30 %
HB(8,8,11) 0.245 4.835 ” » » 93 %

12 || HB(7,8,12) 0.170 5.224 HM(7,7) 0.127 3.340 34 %
HB(8,8,12) 0.180 4.764 ” ” ” 42 %
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Table 5.5: PEG(num.g(HB(%,8,p)), numeg(OM(k,p))) taken row-wise and
Ruyum/theor applied to Problem 2.

P HB(k,8,p) | numeg(HB(%,8,p)) | Ruum/theor || OM(k,p) | numeg(OM(k,p)) | Rpum/theor PEG
5 || HB(2,8,5) 0.366 4.463 HM(4,5) 0.192 5.647 91 %
» ” » HM(5,5) 0.292 6.069 25 %

» » » HM(6,5) 0.287 4.766 28 %

» » » HM(7,5) 0.312 4.563 17 %

» » » RK(10,5) 0.324 5.200 13 %

6 || HB(2,8,6) 0.306 6.925 HM(5,6) 0.179 9.345 1%
HB(3,8,6) 0.331 5.512 » » ) 85 %
HB(4,8,6) 0.296 4.729 » ” ” 65 %

» » » HM(6,6) 0.174 5.244 70 %

» » » HM(7,6) 0.194 4.811 53 %

7 || HB(3,8,7) 0.334 7.343 HM(7,7) 0.124 5.782 169 %
HB(4,8,7) 0.289 5.549 ” ” ” 133 %

8 || HB(3,8,8) 0.198 6.785 HM(7,7) 0.124 5.782 60 %
HB(4,8,8) 0.229 6.295 ” ” ” 85 %
HB(5,8,8) 0.234 5.421 ” ” ” 89 %
HB(6,8,3) 0.329 7.439 » » » 165 %
HB(7,8,3) 0.309 6.940 » » » 149 %

9 || HB(4,8,9) 0.148 5.853 HM(7,7) 0.124 5.782 20 %
HB(5,8,9) 0.254 7.757 » ” » 105 %
HB(6,8,9) 0.269 7.230 » » » 117 %
HB(7,8,9) 0.254 6.418 » ” ” 105 %
HB(8,8,9) 0.284 7.119 ” ” ” 129 %

10 || HB(5,8,10) 0.248 11.169 HM(7,7) 0.124 5.782 100 %
HB(6,8,10) 0.149 5.207 ” ” " 20 %
HB(7,8,10) 0.279 8.381 ” ” ” 125 %
HB(8,8,10) 0.289 8.453 ” » ” 133 %

11 || HB(7,8,11) 0.153 6.191 HM(7,7) 0.124 5.782 23 %
HB(8,8,11) 0.233 8.153 ” ” ” 88 %

12 || HB(7,8,12) 0.163 8.907 HM(7,7) 0.124 5.782 32 %
HB(8,8,12) 0.178 8.377 ” ” ” 44 %
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We observe that the ratio R,/ of HB(k,8,p) for Problems 1 and 2 are greater
than 1, as with hybrid methods in [17]. The theoretical strong stability bounds of
HB(k,8,p) are thus verified in the numerical comparison of the maximum time steps
for Problems 1 and 2.

To conclude, new explicit 8-stage, k-step SSP Hermite—Birkhoff methods, called
HB(k,8,p), of orders p = 4,5, ...,12, with nonnegative coefficients are constructed by
combining linear k-step methods with an 8-stage Runge-Kutta (RK) method of order
5. We found no counterparts of HB(k,8,p) methods of order greater than 8 in the
literature among hybrid and general linear multistep multistage methods. Our new
HB(k,8,p) tend to have larger effective SSP coefficients than hybrid methods [17] of
the same order and other frequently used methods. Based on the maximum effective
CFL numbers, HB(2,8,5) compares favorably with other methods of the same order,
including RK(10,5) of Ruuth. Following [17], finding more efficient generalized SSP

methods appears to be promising in the light of the present work.



Chapter 6

Conclusion and Future Work

This thesis described the representation of Hermite-Birkhoff methods, HB(k,s,p),
which are combinations of k-step methods and s-stage Runge—Kutta (RK) methods
under the extended Shu—Osher form. Moreover, the vector formulation of the canon-
ical Shu-Osher form for SSP RK methods was extended to SSP HB methods. These
extensions are very helpful in setting up the optimization problems to obtain the
SSP coefficients, ¢, and formulae of HB(k,s,p) methods. The following are important
results which are derived from the coefficient ¢ of HB(k,s,p):

e For the same order p, the same stage number s, when the step number £ in-

creases, the SSP coefficients increase.

e For the same step number k and the same stage number s, when the order p

increases, the SSP coefficient decrease.

o [f the order of RK methods combined with k-step methods increases, then the
SSP coefficients of the HB methods increase.

There are many typical HB methods with specific stage number and order pre-

sented in this thesis such as:

112
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A collection of new SSP, explicit, 4-stage, noncanonical, k-step HB(k,4,p) (p =
3,...,8) by combining k-step methods of order (p — 3) with RK4.

A family of new SSP, explicit, s-stage (s =4,5,...,10) noncanonical HB(k,s,4)
methods of order 4 by combining k-step methods of order (p — 3) with RK4.

e A new series of SSP, explicit, 8-stage, canonical HB(k,8,p) methods by combin-
ing k-step methods of order (p — 3) with RK4.

e A new series of SSP, explicit, 8-stage, canonical HB(k,8,p) methods by combin-
ing k-step methods of order (p — 4) with RK5.

In general, the effective SSP coefficients, ceg(M) defined in (2.2.1), of these meth-
ods are much better than those of other methods such as hybrid methods, RK methods
and general linear methods.

In addition, the largest effective CFL number, numeg(M) defined in (4.1.5) and
the percentage efficiency gain, PEG(numeg) defined in (4.1.8), which were obtained
when tested on Burgers’ equation, show numerically the good efficiency of the above
HB methods over well-known methods.

The numerical results in this thesis also show that all the ratios of the maximum
numerical to theoretical stepsize, Ryum/theor defined in (4.1.7) are greater than one,
that is, as long as the forward Euler method satisfies the TVD property (4.1.3) with
error (4.1.4) under its time step restriction, At < Atpg. In practice, it is possible to
choose the stepsize At < max At instead of At < max Atipeor as in Theorems 2.1.4
and 2.1.11 so that HB methods satisfy the TVD property (4.1.3) with error (4.1.4).

While many theoretical and numerical results on SSP HB methods were obtained
and presented in this thesis, there are many other questions for future work. One
obvious problem is the low storage requirements of the methods. Although the ef-
fective SSP coefficients, c.g(M), related to CPU time and the largest effective CFL

number, numeg(M ), are the basis to choose fairly good HB methods, in practice, it
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is more important to consider the memory used by the methods. Moreover, if the
canonical Shu-Osher forms of the matrices o, and 3, are sparse and the step number,
k, is low, the canonical Shu-Osher forms of k-step HB methods (2.1.68) will allow for
reduced-storage implementation. In our planning, we will consider the low-storage of
some chosen HB methods with low step number k.

Furthermore, there are other ideas which need further study:

e Albeit Chapter 3 just surveys the SSP coefficients of all families of HB methods
based on combining k-step methods with RK5 and Chapter 5 presents a col-
lection of HB methods as typical examples for Chapter 3, there are other good
families of methods, which are worth to be considered; for instance, canonical

6-stage HB methods.

e In [52], Shu mentioned that WENOS5 is usually the best choice, but our obtained
methods have very high order (p > 5); therefore, combining them with other
spatial time discretizations such as WENO7 or WENO11 may give good results

when applied to other problems.

e All the test problems in this thesis are Burgers’ equation and linear advection
equation, so applying HB methods to more test problems such as nonconvex
Buckley—Leverette flux or Burgers’ equation with different initial conditions

would also be interesting.



Appendix A

A.1 Eleven noncanonical HB(k, 4, p) methods con-

sidered in the thesis

HB(2,4,4). Here ¢ = 1.593, cog = 0.398, and
o =[0,0.41402182360075634,0.51006789128486130, 0.95950236308462156]T.

Yo = 1.3137364256438025 e-01y,,—1 + 8.6862635743561967 e-01yy + 5.4539546616513657 e-01AtL f1,
Y3 = 3.7611628586354845 e-01yn—1 + 2.3615691062661964 e-01At fr,—1 + 6.2388371413645161 e-01Y>
+ 6.2388371413645161 e-01Y> + 3.9172579348020337 e-01 At F>,
Y, = 6.0575318286657687 e-02y,,—1 + 4.3008189202816044 e-02y,, + 8.9641649251052635 e-01Y3
+ 5.6284441132346308 e-01 At F3,
Ynt1 = 4.4524211403575709 e-02y, 1 + 3.8295387371954609 e-01yy, + 2.4045011377921155e-01AtL f
+ 1.6774221781036905 e-01Y>2 + 9.2083912086026398 e-02At F> + 4.0477969706650918 e-01Y4

+ 2.5415417076166058 e-01 At Fy.
HB(3,4,4). Here ¢ = 1.843, cog = 0.461, and
o =[0,0.30622814192704767,0.55930144311839380, 0.88515753145046949]T.

Y> = 1.8162651927653470 e-01y,, —1 + 8.1837348072346527 e-01y,, + 4.3925422184221165 e-02At fr, 1
+ 4.4392923901936121 e-01At fr,

Y3 = 2.2153848827415687 e-01y,,—1 + 1.2017424174852812 e-01A¢ fr,—1 + 7.7846151172584321 e-01Y>
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+ 4.2227886734649689 e-01 At Fy,
Y, = 6.7530828539879564 e-04yn—2 + 1.3756312556575984 e-01yp—1 + 7.4621545159975711 e-02At fr,—1
+ 8.6176156614884136 e-01Y3 + 4.6746524085603702 e-01 At F3,
Yn+1 = 1.0945244030080964 e-02y,, —2 + 4.4070641867034777 e-01y, + 2.3906256700586392 e-01At fr,

+ 5.4834833729957133 e-01Y + 2.9745326043523995 e-01AtFy.

HB(2,4,5). Here ¢ = 0.854, cog = 0.213, and
o = [0,0.53932491626022294, 0.65240063351038347, 0.76547635076054232] 7.
Yo = 2.9087136529909646 e-01y,,—1 + 7.0912863470090359 e-01y,, + 8.3019628155931935 e-01AtL £y,
Y3 = 1.7386041575857100 e-01y,, —1 + 4.4327424061899495 e-01y,, + 1.7154130384111310e-01Atfp,—1
+ 3.8286534362243407 e-01Y> + 4.4823092603973058 e-01 At Fy,
Yy = 1.0738138250177699 e-01y,,—1 + 6.4165836289914413 e-01y,, + 4.2428460618156771 e-01A¢t fr,
+ 6.9789004846984226 e-03Y> + 2.4398135411438043 e-01Y3 + 2.8563564217231024 e-01AtF3,
Yn+1 = 2.0843560497871033 e-02y,,—1 + 3.7256984232963808 e-01y,, + 2.4401278765485472 e-02At fr,—1
+ 9.9464375557570234 e-02At fr, + 1.9865525045683016 e-01Y> + 4.0793134671566084 e-01Y4

+ 4.7757638121279422 e-01 At Fy.

HB(3,4,5). Here ¢ = 1.366, ceg = 0.341, and
o = [0,0.49606471932245216, 0.45040838060150046, 0.90025795055268820] .
Yo = 6.7487162492609845 e-02y,, —2 + 5.1463622662637439 e-02y,,—1 + 8.8104921484475274 e-01yy,
+ 3.7666033438306788 e-02At f,,_1 + 6.4483663353200249 e-01AtL fr,
Y3 = 5.0435237298896751 e-01y,,—1 + 4.6382691456699904 e-02y,, + 3.6913362027045182 e-01At fr,—1
+ 3.3947318843433938 e-02At fr, + 4.4926493555433245 e-01Y> + 3.2881533031940274 e-01 At Fy,
Y4 = 3.4089035733282883 e-02y,, —2 + 1.1966629872952983 e-01y,,—1 + 8.7583317617032308 e-02At fr, —1
+ 8.4624466553718747 e-01Y3 + 6.1936331373448850 e-01 At F3,
Yn+1 = 1.7929870801754462 e-02y,,—2 + 2.1701226168846510 e-07y,—1 + 4.2335763047475578 e-01yy,
+ 1.3122805551224935 e-02At fr, 2 + 1.5883046480813512 e-07At fr,—1 + 1.8492270511436729 e-01AtL fr,
+ 1.7607534416799414 e-01Y> + 1.2886888753573725 e-01AtF> + 2.4724918308539948 e-03Y3

+ 3.8016444571237995 e-01Y, + 2.7824093958806490 e-01 At Fy.

HB(3,4,6). Here ¢ = 0.716, ceg = 0.179, and
o =[0,0.30133930954368343, 0.67073091427861631, 0.78922095936386205]T.

Yo = 4.7770452064870433 e-02y,, —2 + 5.1822440739673215 e-01y,, —1 + 4.3400514053839745 e-01yy
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=+ 3.0925041808997500 e-01At fr,—1 + 6.0585420298018144 e-01At fr,
Y3 = 1.7881046936624978 e-01y,,—2 + 3.1435205819021794 e-01y,,—1 + 4.3625387781624295 e-02At fr,—2
+ 4.3882317945301935 e-01At fr,—1 + 5.0683747244353228 e-01Y2 + 7.0752528996969044 e-01 At F3,
Y4 = 2.9550265031416362 e-02y,, —2 + 7.2551231803535421 e-01y,, 4+ 1.6050124780249204 e-02At fr, 2
+ 3.2606121209759092 e-01At fi, + 2.4493741693322948 e-01Y3 + 3.4192305494818703 e-01AtF3,
Yn+1 = 1.2753583942514621 e-02y,,—2 + 2.8933666952256465 e-01y,, 1 + 3.7340911321864906 e-01y,
+ 1.2858329242989275 e-01At fr,—1 4 4.7739129368719369 e-01 At fy, + 1.1871654869920525 e-04Y>

+ 3.2438191676757244 e-01Yy + 4.5282446977609897 e-01 At Fy.

HB(4,4,6). Here ¢ = 1.086, ceg = 0.271, and
o =[0,0.24121065330980895, 0.52911058180223902, 0.84576677386391186]T.

Y7 = 3.1178857109809961 e-02y,, —3 + 4.4689624054579768 e-01y,, —1 + 5.2192490234439237 e-01yy,
+ 1.6598587642875223 e-02At fr, —3 + 2.8486592470334560 e-01 At f,—1 + 4.8017895283881568 e-01At fr,
Y3 = 5.1959540622281350 e-02y,, —3 + 3.5941507823114022 e-01y,, —1 + 3.0209737556498341 e-02At f1, 3
+ 3.3066741043451991 e-01At fr,—1 + 5.8862538114657859 e-01Y5 + 5.4154442116810342 e-01 At Fy,
Y4 = 8.0231772899364701 e-03y,,—3 + 1.3131587577573756 e-01y,—1 + 2.5397806261967282 ¢-01yy,
+ 1.1796160318280763 e-03At f,—3 + 1.2081262924584257 e-01At fr,—1 + 6.0668288431465323 e-01Y3
+ 5.5815760234260159 e-01 At F3
Ynt+1 = 1.3097096111310189 e-02y,, _3 + 7.4923370275830570 e-02yy, —2 + 5.5794585649361489 e-02y,, 1
+ 4.5776927884707702 e-01y,, + 6.8930655196950130 e-02At fy, —2 + 5.1331878572652812 e-02At fr, 1

+ 4.2115479060534788 e-01 At f,, + 3.9841566911642062 e-01Y; + 3.6654855503457545 e-01AtFy.

HB(4,4,7). Here ¢ = 0.564, ceg = 0.141, and
o =[0,0.47253084193946687, 0.62298379770112466, 0.77343675346274787]T.

Yo = 1.4181171301608114 e-01y,, 3 + 2.6746986944809459 e-01yy, 2 + 8.8729483281577440 e-02y, —1
+ 5.0198893425424684 e-01y,, + 4.7424507571486046 e-01At fr, —2 + 1.5732433938761134 e-01At fr,—1
+ 8.9006578806300507 e-01AL fr,,

Y3 = 5.6455583476077723 e-02yy, 3 + 1.7475976037994695 e-01y,, 2 + 3.7086510533962463 e-01y,, —1
+ 1.8183631650368465 e-01y,, 4 4.7513634361493660 e-02At fr, —3 + 6.5757294578528802 e-01At fr,—1
+ 3.2241006385482263 e-01At f, + 2.1608323430066603 e-01Y>2 + 3.8313253759417537 e-01AtF>,

Yy = 2.4221142166745917 e-02y,, 3 + 4.8697070969724393 e-02y,, —2 + 1.9256679584245262 e-12y,, 1
+ 7.1071176389436097 e-01yy, + 8.6343729694796853 e-02At fr,—2 + 3.4143798899322064 e-12A¢ fr, 1

+ 3.6397677596282374 e-01At f,, + 1.3133260011104431 e-02Y>
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+ 2.0323676295613866 e-01Y3 + 3.6035473541396956 e-01 At F3,

Yn+1 = 3.3921902937070918 e-02y,, —3 + 2.5714116547015001 e-02y,, —2 + 3.9501177301951948 e-02y,, —1
+ 5.3391509806078963 e-01y,, + 1.3755767756843626 e-02At fr, 3 + 4.5593147272786197 e-02At fr, 2
+ 7.0038688316725384 e-02At fr,—1 + 3.0756492028491300 e-01 At fr, + 8.6160403455941698 e-02Y>

+ 2.8078730169723076 e-01Y, + 4.9785792855077493 e-01AtFy.

HB(5,4,7). Here ¢ = 0.877, ceg = 0.219, and
o = [0,0.24952030418221310, 0.53315370185373812, 081678709952540329]7“.

Yo = 2.3982101438859836 e-02y,, —4 + 8.7678139889331416 e-02y,, 3 + 5.3701393015570177 e-02yp, —2
+ 3.8841208288909290 e-01y,, —1 + 4.4622628276714571 e-01y,, 4+ 9.9887959665517417 e-02At fr,—3
+ 6.1179703245210756 e-02A¢ fr,—2 + 4.3486379190199109 e-01At fr,—1 + 5.0836654371316070 e-01At fr,
Y3 = 1.1796058355794571 e-02y,, —4 + 8.3827812174208732 e-02y,,—3 + 4.0125168106181686 e-01yy—1
+ 7.7216192941462425 e-02At fr,—3 + 4.5712890104892312 e-01At fr,—1 + 5.0312444840817983 e-01Y>
+ 5.7318819346265659 e-01 At F>,
Y4 = 1.4755308341935032 e-02yy, —4 4 6.1776665970132170 e-02y,, —3 + 3.0637732023705277 e-01yy 1
+ 1.5743252991886703 e-01yy, + 7.0379516792679092 e-02At fr,—3 + 3.4904259425320944 e-01 At fr,—1
+ 1.7935615671620367 e-01 At fr, + 4.5965817553201299 e-01Y3 + 5.2366892540627263 e-01 At F3,
Yn+1 = 1.1895330671295582 e-02yy, —4 + 7.4076433114412518 e-02y,,—2 + 1.2066305045361436 e-02y,, —1
+ 5.4016773987737765 e-01y, + 6.0405726702878262 e-03At f,—4 + 8.4392116124240218 e-02At fr,—2
+ 1.3746625934402956 e-02At fr,—1 + 3.9593568274754259 e-01At fr,

+ 3.6179419129155271 e-01Y, + 4.1217666835272870 e-01 At Fy.

HB(5,4,8). Here ¢ = 0.490, ceg = 0.123, and
o =0,0.43719711625027513,0.61523315185784544, 0.79326918746546093]T.

Yo = 1.1240806184358765 e-01y,, —4 + 2.3425521053653969 e-01yy, 2 + 2.2640298225573424 e-01yp 1
+ 4.2693374536413853 e-01y,, + 6.5470343019684962 e-02At fr, —4 + 4.7749624431538534 e-01 At fr, 2
+ 1.6853188701135904 e-01 At f,,—1 + 8.7024429260701008 e-01 At fr,

Y3 = 7.6866971450876870 e-02y,, —4 + 1.9188166805763143 e-01y,,—3 + 3.8225805090004583 e-01yy,—1
+ 1.4490725338067179 e-01y,, + 3.0082537934918074 e-01At fr,_3 + 7.7917918344710779 e-01At fr, 1
+2.9537302117997444 e-01At fr, + 2.0408605621077405 e-01Y>2 + 4.1600067351578807 e-01AtF>,

Yy = 1.3379640088295723 e-02yy, —4 + 1.5102357622019259 e-02y,, —3 + 4.9961391525236702 e-02yy, 2
+ 6.1124255630347346 e-03y,,—1 + 7.1696847190691049 e-01y,, + 8.4163142856899329 e-03At fr,—4

+ 1.0183925795900226 e-01At fy, —2 + 1.2459318378965911 e-02At f,,—1 + 3.4874152013934234 e-01At f1,
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+ 1.9847571329450317 e-01Y3 + 4.0456477987779804 e-01 At F3,
Ynt1 = 5.6758862391967811 e-03y, —4 + 1.6498330025689711 e-01y, 3 + 1.2555868880225157 e-01y,, —2
+ 1.7392006935005835 e-01y,, —1 + 2.9860166752988093 e-01y,, + 6.8744743680103665 e-02At f1,—3
+ 2.5593369815305611 e-01At fr, —2 + 3.5451155914745591 e-01At fr, 1 + 6.0865743163304931 e-01 AL f1,

+ 6.0865743163304931 e-01 At f, + 2.3126038782171532e-01Y, + 4.7139172012809527 e-01AtFy.

HB(6,4,8). Here ¢ = 0.722, cegr = 0.180, and
o = [0,0.33085734752000873, 0.57058367833569879, 0.81031000915 165174]T.

Yo = 4.6472690717261362 e-03y,, 5 4+ 1.7617740666490314 e-02y,, —2 + 5.1087509618159122 e-01yy, 1
+ 4.6685989408019241 e-01y,, + 4.0074586314538660 e-03At fr,—5 + 2.4400693250375298 e-02At fr,—2
+2.2519192095834503 e-01At fr,—1 + 6.4660419755303700 e-01AtL f,

Y3 = 6.3437465306319159 e-03y,, 5 + 3.8280022711921196 e-03y, —4 + 1.3378083962303952 e-01yy, 3
+ 4.0276427099509055 e-01y,, —1 + 1.0731673311116895 e-01y, + 5.3018097467378913 e-03At fr,—4
+ 1.1632225850184115 e-01At fr,—3 + 5.5783131417384202 e-01 At f,—1 + 1.4863442111273212 e-01At f1,
+ 3.4596640746887680 e-01Y> + 4.7916587849650372 e-01 At Fy,

Yy = 2.4354830266242293 e-02y,, —5 + 1.0614148803253295 e-01y,,—3 + 3.0848403901567312 e-01yy,—1
+ 2.1975355520489917 e-01y,, + 1.2996464181697261 e-02At fr, 5 + 1.4700669851193610 e-01At fr, 3
+ 4.2725253772042082 e-01At f,,—1 + 3.0436020104627681 e-01At fr,
+ 3.4126608748065268 e-01Y3 + 4.7265590264986124 e-01 At F3,

Yn4+1 = 7.0409864973861782 e-03y,,—5 + 3.1910209804637511 e-02yy,—a + 1.1534180942145611 e-01yy,—2

+ 7.1301418909879871 e-02yy, —1 + 4.6441610170111464 e-01y, + 3.5260849749088656 e-02At f1, 4
+ 1.5974920756946681 e-01 At fr, —2 + 9.8752960670244611 e-02At fr, 1 + 4.9054264305477624 e-01At f1,

+ 3.0998947366552543 e-01Y, + 4.2933757517186882 e-01 At Fy.

HB(7,4,8). Here ¢ = 0.852, cor = 0.213, and
o =[0,0.28645813613098242, 0.55824315714402994, 0.83002817815821284]T.

Yo = 1.1033483152094540 e-02yy, —¢ + 2.1618741753910483 e-02y,, —4 + 7.3164773446182038 e-02y,, 3
+ 8.9377315222374923 e-02y,, —2 + 3.3052209858727233 e-01yy, —1 + 4.7428358783816565 e-01yy,
+ 7.9271467501655368 e-03At fr,—6 + 2.5357039226603571 e-02At fr, —4 + 8.5816374116448504 e-02At f1, 3
+ 8.5816374116448504 e-02At fr, 3 4 1.0483237710410760 e-01AL fr, 2
+ 3.8767574517240444 e-01At fr,_1 + 5.5629636906003022 e-01 At fr
Y3 = 4.1673572573951061 e-03yy,—¢ + 4.4113926716232821 e-02y,,—4 + 4.0105444119401153 e-02y,,—3
+ 4.2687049006597683 e-01y,,—1 + 5.1742075598859100 e-02A¢ fr, —4 + 4.7040449037793017 e-02At fr,—3

+ 5.0068463208894975 e-01At fr,—1 + 4.8474278184099362 e-01Y> + 5.6856415946279171 e-01AtFy,
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Y4 = 6.7610940286408298 e-03yy,—¢ + 1.1290295300529569 e-02y,, —4 + 6.5520108757853551 e-02y,, —3

+ 2.9888049430192454 e-01y,,—1 + 1.8498138261618360 e-01y,, + 4.7303133989144205 e-03At fr,—6
+ 1.3242605146698148 e-02At f,—4 + 7.6849799438662283 e-02At fr,—3 + 3.5056269714262467 e-01AL fr,—1
+ 2.1696823194354331 e-01At fr, + 4.3256662499486692 e-01Y3 + 5.0736573862494427 e-01 At F3,

Yn+1 = 2.5881604396226902 e-03y,, —6 + 7.6357016234845469 e-03y, 5 + 1.6304328340768028 e-02y,, —4
+ 1.2567327447111440 e-01y,—2 + 7.7112740468168656 e-02y,,—1 + 4.3369750806348006 e-01yx,
+ 8.9560617261325842 e-03At fr,—5 + 1.9123661219807291 e-02At fr,—a + 1.4740460785250881 e-01At f1, 2
+9.0447020792438215 e-02At fr,—1 + 5.0648288653910711 e-01At f, + 3.3698828659336139 e-01Y,

+ 3.9526006181688789 e-01 At Fy.

A.2 Thirteen noncanonical HB(k, s,4) methods con-

sidered in the thesis

HB(4,4,4). Here ¢ = 1.932, cor = 0.483, and
o = [0,0.29550672532505878, 0.55487098371182864, 0.87509757670763788]T.

Yo = 4.7524774508095377 e-02y,, 2 + 1.2685090981790423 e-01y,, 1 + 8.2562431567400041 e-01yy,
+ 2.4589659756032358 e-02At fr, —2 + 6.5633572056908576 e-02At fy, —1 + 4.2718395234621287 e-01At fr,
Y3 = 1.9918300748893264 e-01y, —1 + 1.0305871903720029 e-01At fr, 1
+ 8.0081699251106719 e-01Y> + 4.1434846512195339 e-01ALFy,
Yy = 1.2681476034277145 e-01y, 1 + 6.5614868058771342 e-02At fr,—1
+ 8.7318523965722883 e-01Y3 + 4.5179231610038256 e-01 At F3,
Yn4+1 = 3.2258872667719520 e-03y,,—3 + 1.4711725267828712 e-02y,, —1 + 4.0081143477759190 e-01yn,
+ 7.6119523449503096 e-03At fr, —1 + 2.0738271584706414 e-01At f, 4+ 5.8125095268780758 e-01Y4

+ 3.0074341872002397 e-01 At Fy.

HB(2,5,4). Here ¢ = 2.258, cog = 0.452, and
o =[0,0.43353487829608683, 0.49212970792955379, 0.51952905303075192, 0.95306393132683886]T.

Yo = yn + 4.33534878296086834126 e-01At fr,
Y3 = 2.6154930329164866 e-01y,, —1 + 1.1339074537097120 e-01At fr, 1

+ 7.3845069670835128 e-01Y> + 3.2014413292511562 e-01AtFy,
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Y4 = 4.1933308968746225 e-01y,, + 1.0527799621252554 e-02y,, —1 + 2.2992686629013520 e-03 At fr, —1
+ 5.7013911069128531 e-01Y3 + 2.4717518996538551 e-01 At F3,
Y5 = Yy + 4.3353487829608683 e-01AtFy,
Yn4+1 = 2.3548942789448177 e-02y,, —1 + 2.1442551411227079 e-01y, + 9.2960939164239198 e-02At fr,
+ 2.4250812182244122 e-01Y2 + 1.0509003662565282 e-01 At F>

+ 5.1951742127583977 e-01Yy + 2.2522892200551811 e-01AtFy

HB(3,5,4). Here ¢ = 2.520, cog = 0.504, and
o =[0,0.39667202894458992, 0.34733932541243928, 0.74401135435702903, 0.87211776033132926]7“‘

Yo = yn + 3.96672028944588694888 e-01At f1,

Y3 = 3.1933390462023281 e-01y,—1 + 1.2667082785650549 e-01At fr,—1
+ 6.8066609537976719 e-01Y> + 2.7000120108808318 e-01 At F>,

Ys = Y3 4 3.9667202894458875 e-01 At F3,

Y5 = 3.0842709893420334 e-01yn, + 9.7477349638087907 e-02At fr, + 1.9119743013194673 e-02Y>
+ 6.7245315805260308 e-01Y, + 2.6674335857492221 e-01AtFy,

Yn+1 = 3.7295391119407718 e-03y,,—2 + 1.6897464146259084 e-01yn + 5.2526715235296312 e-02At fr,

+ 1.9426370492958658 e-01Y> + 7.4688701847753544 e-02At F>

+ 6.3303211449588204 e-01Y5 + 2.5110613324416470 e-01 At F.

HB(2,6,4). Here ¢ = 2.930, ceg = 0.488, and
o =[0,0.34131501751573518, 0.58493205600266185, 0.59078590110096663, 0.58032954089932975, 0,89749336077124797]T.

Yo = yn + 3.4131501751573518 e-01 At f,

Y3 = 7.2837460069414606 e-02y,, 1 + 2.4860518959393910 e-02At fr,—1
+9.2716253993058551 e-01Y> + 3.1645449855634128 e-01 At Fy,

Yy = 2.1165650044551004 e-01y,,—1 + 7.2241542156878474 e-02At fr,—1
+ 7.8834349955449001 e-01Y3 + 2.6907347535885678 e-01 At F3

Y5 = 5.2217429737665433 e-01y, + 1.7822592945537952 e-01At fi, + 7.3255243277284984 -02Y>
+ 4.0457045934606084 e-01Y, + 1.3808597341804979 e-01AtFy

Ye = 4.1616350378895876 e-02y,, + 1.4204285358513801 e-02At fr, + 2.3181094241883033 e-10Y>
+ 9.5838364938929321 e-01Y5 + 3.2711073207810087 e-01 At F,

Yn+1 = 1.3882061429735554 e-02y,,—1 + 1.0652255784084119 e-01yy + 3.6357748695267644 e-02At f1,

+ 1.8790001888305066 e-01Y> + 5.6513205020659152 e-02At F>

+ 6.9169536184637270e-01Ys + 2.3608601454414754 e-01 At Fg.
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HB(3,6,4). Here ¢ = 3.069, ceg = 0.512, and
o = [0,0.32582165651383960, 0.37067798466591867, 0.69649964117975816, 0.66867140411649717, 0.82079730062345002]T.

Yo = yn + 3.2582165651383960 e-01 At fr,

Y3 = 2.1191789029946936 e-01y,, —1 + 6.9047438062291244 e-02At fr,—1
+ 7.8808210970053061 e-01Y> + 2.5677421845154841 e-01AtF>,

Yy = Y3 4 3.2582165651383960 e-01 At F3

Y5 = 5.0766128220635420 e-01y,, + 1.6540703991641412 e-01At fy, + 9.1877548437183622 e-05Y>
+ 4.9224684024520876 e-01Y; + 1.6038468090239727 e-01AtFy

Ye = 2.5976250331144174 e-01y,, + 8.4636249129115701 e-02At fr, + 3.2614058591337942 e-09Y>
+ 7.4023749342715239 e-01Y5 + 2.4118540632208724 e-01AtF5

Yn+1 = 1.7848294943323458 e-03y,,—2 + 1.1378607462930097 e-01y,, + 2.6029211669753471 e-02At f),

+ 6.5472471465212512 e-02Y> + 1.7176907587067886 e-02At F>

+ 8.1895662441115424 e-01Y5 + 2.6683380397862461 e-01 At Fg.

HB(2,7,4). Here c(HB(2,7,4)) = 3.726, ceq:(HB(2,7,4))) = 0.532, and
o = [0,0.26841980744987709, 0.36782834082903565, 0.63624814827891274,
0.67218202479193823, 0.60626599422072069, 0.87468580167059773] T .

Yo = yn + 2.6841980744987709 e-01At fr,,

Y3 = 1.3324553359862062 e-01y,—1 + 3.5765740472097872 e-02At fr,—1
+ 8.6675446640137932 e-01Y> + 2.3265406697777921 e-01At F>,

Yy = Y3 4 2.6841980744987709 e-01 At F3,

Y5 = 3.6364127191257684 e-01y, + 9.7608520187602299 e-02At f, + 1.7600759196159160 e-013Y>
+ 6.3459865216780720 e-01Y, + 1.7033884802283433 e-01AtFy,

Ye = 4.9707943453901537 e-01y,, 4 1.3342596610625629 e-01At fr, + 3.0940611702902734 e-04Y>
+ 5.0261115934395562 e-01Y5 + 1.3491079061326405 e-01 At F5,

Y7 = Yo + 2.6841980744987703 e-01 At Fg,

Yn+1 = 7.4249746253942581 e-03y,,—1 + 4.2619903069630594 e-02y,, + 1.0451108327339836 e-02At fr,

+ 1.4505253390564679 e-01Y> + 3.7950229482122844 e-02At F> + 8.0490258839932849 e-01Y7

+ 2.1605179779405539 e-01 At Fr

HB(3,7,4). Here c(HB(3,7,4)) = 3.741, coq(HB(3,7,4)) = 0.534, and
o = [0,0.26730677262648872, 0.36663180051479927, 0.63393857314128788,



A.2. Thirteen noncanonical HB(k, s, 4) methods considered in the thesis 123

0.66822290349557856, 0.60553808135903842, 0.86781907493917998] T .

Yo = yn + 2.6730677262648872 e-01At fr,

Y3 = 1.3255018308632302 e-01y,—1 + 3.5431561651855202 e-02A¢t fr,—1
+ 8.6744981691367695 e-01Y> + 2.3187521097463354 e-01 At F>,

Y4 = Y3+ 2.6730677262648872 e-01 At F3,

Y5 = 7.8339201835586181 e-02yx,, + 2.0940599212805666 e-02At fr, + 2.8923969641243608 e-01Y>
+ 6.3242110175197763 e-01Y, + 1.6905044365020938 e-01 At Fy,

Y = 4.5282440752517999 e-01y, + 1.2104303094205779 e-01At fr, + 4.1010199215761101 e-02Y>
+ 5.0616539325905896 e-01Y5 + 1.3530143768729652 e-01At F5,

Y7 = 1.4859000088371840 e-02Y3 + 3.9719113580793941 e-03 At F»
+ 9.8514099991162807 e-01Y5 + 2.6333486126840927 e-01 At Fg,

Yn41 = 8.3965945879398759 e-04y,, —2 + 4.8613008172801175 e-02y,, + 1.2874262041034118 e-01Y>

+ 3.4413774361365404 e-02At F> + 8.2180471195806348 e-01Y7 + 2.1967396528275113 e-01 At F.

HB(2,8,4). Here ¢(HB(2,8,4)) = 4.424, c.g(HB(3,8,4) = 0.553, and
o = [0,0.22603296506803669, 0.45206593013607332, 0.57538108409035438,
0.40503033408031602, 0.53276080986754903, 0.75879377493558564, 0.92644778515340753]T .

Y2 = yn + 2.2603296506803669 e-01 At fr,
Y3 = Y2 + 2.2603296506803669 e-01 At F5,
Yy = 2.0286172312623845 e-02y,,—1 + 1.0803874178805883 e-01yy, + 4.5853436777034788 e-03At fr,—1
+ 8.7167508589931730 e-01Y3 + 1.9702730424175827 e-01 At F3,
Y5 = 4.9460539841339118 e-01y,, 4+ 5.0539460158660887 e-01Y, + 1.1423584032600029 e-01AtFy,
Y = 2.3834939846072800 e-01yx, + 5.3874821256261370 e-02At fi, + 4.3546190149383168 e-03Y>
+ 4.3546190149383168 e-03Y> + 7.5729598252433372e-01Y5 + 1.7117385636408730 e-01 At F5,
Y7 = Y5 + 2.2603296506803666 e-01 At Fp,
Yg = 3.3268281696016186 e-02Y3 + 7.5197283544692212 e-03AtF> + 7.6309888786772917 e-02Y3
+ 8.9042182951721116 e-01Y7 + +2.0126468628708105 e-01At F77,
Ynt+1 = 3.0622000515870560 e-03y,, —1 + 3.4396037347807322 e-02y,, + 2.2397284277651699 e-01Y3

+ 5.0625245747493351 e-02AtF3 4 7.3856891982408845 e-01Yg + 1.6694092285493578 e-01 At Fg.

HB(3,8,4). Here c(HB(3,8,4)) = 4.431, coq(HB(3,8,4)) = 0.5538, and
o = [0,0.22569317768029287, 0.45138635536058574, 0.55305470898706099,
0.41140419740313083, 0.53185945085898290, 0.75755262853927563, 0.91830243658955979] .

Y2 = yn + 2.2569317768029287 e-01At fr,
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Y3 = Y2 + 2.2569317768029287 e-01 At F5,

Yy = 1.8136891011337745 e-02y,, —1 + 1.4429794897581311 e-01y, + 4.0933725655899564 e-03At fr, _1
+ 8.3756516001284920 e-01Y3 + 1.8903274247760293 e-01 At F3,

Ys = 4.7171067241834541 e-01y,, 4+ 5.2828932758165470e-01Y, + 1.1923129707648883 e-01AtFy,

Y = 2.2802085154938864 e-01yn + 5.1462750563548147 e-02At fr, + 2.7780924146448754 e-02Y>
+ 7.4419822430416260 e-01Y5 + 1.6796046206723791 e-01 At F5,

Y7 = Y5 + 2.2569317768029284 e-01 At F§,

Yg = 7.2741873790442308 e-04Y2 + 1.6417344646181553 e-04AtF> + 1.2137884359347230 e-01Y3
+ 8.7789373766862333 e-01Y7 + 1.9813462732006101 e-01AtF7,

Ynt1 = 4.3049458217011075 e-04y,, _2 + 4.4222997383088054 e-02y,, + 1.9714726015247588 e-01Y3

+ 4.4494791614775667 e-02AtF3 4 7.5819924788226600 e-01Yg + 1.7112039756935671 e-01 At Fg.

HB(2,9,4). Here ¢(HB(2,9,4)) = 5.271, cog(HB(2,9,4)) = 0.586, and
o =[0,0.18973510416279940, 0.37947020832559880, 0.52900811739988363, 0.33177283195412421,
0.52150793611692348, 0.63723279555722223,0.75047127700234584, 0.940206381 16514521]T‘

Y2 = yn + 1.8973510416279943 e-01At fr,

Y3 = Yo + 1.8973510416279937 e-01 At F»,

Y4 = 7.0619852286311971 e-02y,, 4+ 9.2938014771368804 e-01Y3 + 1.7633603913329446 e-01AtF3,

Y5 = 5.3839866310977136 e-01yn + 4.6160133689022864 e-01Y, + 8.7581977736554989 e-02At Fy,

Ye = Y5 + 1.8973510416279937 e-01 At F5,

Y7 = 1.4191585515183294 e-01y, + 2.6926419559585760 e-02At fr,
+ 8.5808414484816709 e-01Ys + 1.6280868460321360 e-01 At Fg,

Ys = 1.7093368412148527 e-01Y> + 3.2432120361721037 e-02AtF> + 9.3714265975099066 e-06Y3
+ 8.2905694445191724 e-01Y7 + +1.5730120571247669 e-01 At F7,

Yo = Yg + 1.8973510416279937 e-01 At Fy,

Ynt1 = 3.7795761833689869 e-03y,,—1 + 1.2870630639322917 e-03y,, + 1.3274175171758950 e-02Y

+2.0055779156521011 e-01Y3 + 3.8052853473286137 e-02At F3

+ 7.8110139401572964 e-01Yy + 1.4820235435528228 e-01 At Fy.

HB(3,9,4). Here c(HB(3,9,4)) = 5.279, coq(HB(3,9,4)) = 0.587, and
o = [0,0.18943721061280203, 0.37887442122560405, 0.51190473654655466, 0.33220975334717834,
0.52164696395998034, 0.64258973999314262, 0.74627464684283940, 0.93064568637963851] 7.

Yo = yn + 1.8943721061280203 e-01 At fr,

Y3 = Yo 4 1.8943721061280203 e-01 At Fy,
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Y4 = 9.9253459073824102 e-02y,, + 9.0074654092617590 e-01Y3 + 1.7063491218218491 e-01At F3,

Y5 = 5.2632270935350933 e-01y,, 4 4.7367729064649067 e-01Y, + 8.9732104670700696 e-02At Fy,

Ys = Y5 + 1.8943721061280203 e-01 At F5,

Y7 = 1.3130188311917806 e-01y,, + 2.4873462486305245 e-02At fr, + 2.3116942601563637 e-06Y>
+ 8.6869580518656186 e-01Y5 + 1.6456331020558435 e-01 At Fg,

Yz = 1.8332627761890183 e-01Y> + 3.4728818664152943 e-02A¢F> + 5.9086889835505332 e-03Y3
+ 8.1076503339754757 e-01Y7 + 1.5358906638922670 e-01 At F7,

Yo = 1.3789243236016317 e-02Y3 + 2.6121957750924324 e-03At F3,
+ 9.8621075676398373 e-01Yg + 1.8682501483770966 e-01 At Fy,

Ynt1 = 4.9675940773150854 e-04y,, _2 + 1.7898560493677686 e-02y,, 4 2.0231601518094915 e-04Y}

+ 1.7826598991396123 e-01Y3 + 3.3770211876430631 e-02At F3

+ 8.0313637416944861 e-01Yy + 1.5214391446434000 e-01 At Fy.

HB(2,10,4). Here c(HB(2,10,4)) = 6.102, cog(HB(2,10,4)) = 0.610, and
o = [0,0.16199536174015935, 0.32587309121796598, 0.48975082069577258, 0.39110537738046303
0.55498310685826957, 0.47054816607752142, 0.63442589555532791, 0.79830362503313468, 0.96218135451094122]T .

Y> = 9.9838267569696360 e-01y, + 1.6361268604319576 e-01AL fr, + 1.6173243030364048 e-03y,,—1,
Y3 = Yo 4 1.6387772947780663 e-01 At F5,
Y, = Y3 4 1.6387772947780663 e-01 At F3,
Ys = 4.0163969692480539 e-01y,, + 5.9836030307519472e-01Y, + 9.8057927877615150 e-02At Fy,
Yo = Y5 + 1.6387772947780663 e-01 At F,
Y7 = 4.3651141473686855 e-01y, + 7.1534499538223190 e-02At fi, + 3.2677181024377802 e-03Y3
+ 1.2142963792919311 e-02Y> + 1.9899613355148157 e-03 At F>,
+ 5.4807790336777440 e-01Y5 + 8.9817762380867569 e-02At Fg,
Yg = Y7 + +1.6387772947780663 e-01AtF7,
Yo = Yg + 1.6387772947780663 e-01 At Fy,
Y10 = Yo + 1.6387772947780663 e-01AtFy,
Yn+t+1 = 2.7123097803231889 e-03y,,—1 + 6.9146647649389378 e-03Y3 + 1.1331595617783755 e-03AtF3
+ 2.1863321246897169 e-01Y, + 2.3225424910426631 e-02AtFy

+ 7.7173981298576633 e-01Y10 + 1.2647096829973448 e-01At Fyg.

HB(3,10,4). Here ¢(HB(3,10,4)) = 6.142, c.s(HB(3,10,4)) = 0.614, and
o =[0,0.16282659661384036, 0.32565319322768072, 0.48847978984152113, 0.35907995652089209,
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0.48552698907685793, 0.55293076340580660, 0.62414211119929675, 0.78175633090122820, 0.94458292751506845] T .

Yo = yn + 1.6282659661384036 e-01At fr,

Y3 = Y2 + 1.6282659661384036 e-01 At F5,

Yy = Y3 4+ 1.6282659661384036 e-01 At F3,

Y5 = 4.4867735985957147 e-01yn + 5.5132264014042853 e-01Y4 + 8.9769989130223021 e-02At Fy,

Ye = 6.9705129853931833 e-02y,, + 9.3029487014606804 e-01Y5 + 1.5147674755319884 e-01At F5,

Y7 = 1.9509480297883888 e-01y, + 3.1766622786092102 e-02At f, 4+ 1.4397346095268116 e-03Y2,
+ 8.0346546241163441 e-01Ys + 1.3082554674125191 e-01At Fg,

Yg = 3.3918333816126425 e-02Y> + 5.5228068580921580 e-03AtF> + 2.0092983397903494 e-01Y3,
+ 7.6515183220483873 e-01Y7 + +1.2458706873075814 e-01AtF77,

Yo = 1.4299235887157244 e-02Y3 + 2.3282959136844139 e-03AtF3 + 3.1633116249260595 e-03Y7,
+ 9.8253745248791668 e-01Y3 + +1.5998322943424034 e-01At Fyg,

Y10 = Yo + 1.6282659661384036 e-01AtFy,
Yn41 = 4.9225322847329942 e-04y,, —2 + 1.7871006145269043 e-04yy,, + 2.4021344291524174 e-03Y3

+ 3.9113137370776901 e-04AtF3 + 1.6901708746032448 e-01Yy + 4.1446692144727487 e-04At Fy

+ 8.2790981482059733 e-01Y710 + 1.3480573745043264 e-01At Fyg.

A.3 Nine canonical HBgrky(k, 8, p) methods consid-

ered in the thesis

HB(2,8,4). ¢ = 4.488, cog = 0.561, and
o =[0,0.22261252811822593, 0.32399579913749438, 0.54660832725572039, 0.76922085537394613,
0.54316218644572012,0.70408011066418930, 0.86203294068817893]T.

Yo = yn + 2.2261252811822591 e-01At fn,
Y3 = 9.9155909424179067 e-02y,, —1 + 2.2073347674778324 e-02At fr,_1
+ 9.0084409057582082 e-01Y> + 2.0053918044344757 e-01 At F>,
Yy = Y3 +2.2261252811822591 e-01 At F3,
Y5 = 9.9999999999999978 e-01Y, + 2.2261252811822588 e-01AtFy,
Ye = 5.8328007348206479 e-01y,, 4+ 1.2984545175882706 e-01 f,, 4+ 4.1671992651793521 e-01Y5

+ 9.2767076359398890 e-02At Fs,
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Y7 = 1.9246504339345005 e-01Y> + 4.2845129884199973 e-02At F> + 8.0753495660654995 e-01Y5
+ 1.7976739823402593 e-01 At F§,

Yg = 1.3429709587574074 e-01Y2 + 2.9896216031834413 e-02AtF> + 8.6570290412425932 ¢-01Y7,
+ 1.9271631208639151 e-01 At F7,

Ynt1 = 3.7214624473466788 e-03y,,—1 + 2.1571407005371301 e-02y,, + 8.3654211005038531 e-02Y>

+ 1.8622475399567143 e-02AtF» 4 8.9105291954224342 e-01Yg + 1.9835954310642495 e-01 At Fg.

HB(2,8,5). ¢ =3.579, ceg = 0.447, and
o =[0,0.19404251163017916, 0.40401651468816963, 0.55883284598278449, 0.56369942258171279,
0.52394260398583692,0.71711922603985434, 0.88706348512404587]T.

Y> = 9.1466922705235709 e-01yn + 8.5330772947642991 e-02y,,—1 + 2.5553414626387477 e-01At fr,
+ 2.3839138313947392 e-01A¢ fr, —1,
Y3 = 5.8121281984410744 e-02y,,—1 + 1.6237533451858632 €-02f,,—1 + 9.4187871801558920 e-01Y>
+2.6313575112596349 e-01 At Fa,
Y4 = 1.9712986864736182 e-01y,, + 1.0159588081044613 e-02At f,, + 8.0287013135263818 e-01Y3
+ 2.2430046568541404 e-01AtF3,
Ys = 4.9121434066055292 e-01y,, + 1.3723216378206793 e-01 f,, + 5.0878565933944719 e-01Yy
+ 1.4214112079575425 e-01AtFy,
Ys = 5.6613523163124690 e-01y, + 1.5816305917604756 e-01 f), + 4.3386476836875315 e-01Y5
+ 1.2121022540177456 e-01 At F5,
Y7 = 9.1646079651557688 e-02y,, + 2.4379466606891546 e-02y,,—1 + 2.5603466290936419 e-02 f),
+ 5.7845025808405991 e-03 f,,—1 + 2.4695884662466314 e-01Ys + 2.4695884662466314 e-01 At Fg,
Yz = 1.1026153152324736 e-01y,, + 8.5066501387831076 e-03y,,—1 + 3.0804126224230666 e-02 f,,
+ 2.3765307900262215 e-03 f,—1 + 3.0113037742442610 e-02Y> + 8.4127782627221176 e-03AtF>
+ 8.5111878059552704 e-01Y7 + 2.3777984930084314 e-01 At F7,
Yn+1 = 1.7950283215485924 e-01Y> + 5.0148295810124532 e-02At F» + 7.3789956884808536 ¢-02Y3
+ 2.0614942623764843 e-02AtF3 4+ 1.7607159013164154 e-02Yg + 4.9189698455916753 e-03At Fg

+ 7.2910005194716787 e-01Yg + 2.0369107629834105 e-01 At Fy.

HB(2,8,6). ¢ = 1.924, cog = 0.240, and
o =[0,0.25483103267570167,0.41250202581152862, 0.56015515567079699, 0.45054490021686211,
0.60769759336536922,0.77759075139631639, 1]T.

Yo = 7.7208656328609560 e-01y,, + 2.2791343671390432 e-01y,,—1 + 4.0125717863993610 e-01A¢L fr,

+ 8.1487290749669899 e-02At fr, — 1,
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Y3 = 4.6568479538393481 e-01y,, + 1.9271583925672603 e-02 f,, + 1.6429215402831460 e-02y,,—1
+ 8.5383439283674492 e-03 fr,—1 + 5.1788598921323370 e-01Y2 + 2.6914789192083438 e-01 At F3,
Yy = 4.7609765752621358 e-01yn + 7.1769757816432536 e-02At f, + 5.2390234247378653 e-01Y3
+ 2.7227462025652238 e-01 At F3,
Y5 = 7.7739261842832785 e-01y,, + 2.8082795102820712 e-01 f,, 4 3.3977224643634799 e-02y,, 1
+ 1.8863015692803745 e-01Y3 + 9.8032018914058175 e-02At Fy,
Yo = 4.4987183051494317 e-01y,, + 7.3935840789499330 e-02 f,, 4+ 5.5012816948505694 e-01Y5
+ 2.8590431134874000 e-01 At F5,
Y7 = 3.9591547785500325 e-01y,, + 7.3424005123931130 e-03y,,—1 + 1.1216458953291714 e-01 f,
+ 5.9674212163260454 e-01Y5 + 3.1012981119991551 e-01 At F,
Yg = 2.9222723151846319 e-01y,, + 8.1809457502216715e-02f,, + 7.0777276848153969 e-01Y7
+ 3.6783298363637484 e-01AtFr,
Yn+1 = 2.2187752112193082 e-01yn, + 4.2018330130825544 e-02At f,, + 8.6867035017904395 e-04yy,, —1
+ 1.5746135117867068 e-02Y3 + 8.1833437496791894 e-03 At F3 + 1.6931964521599721 e-01Y4
+ 8.7996251143812029 e-02AtF4 + 3.1163911912258085 e-01Ys + 1.6196038066087362 e-03AtFg
+ 7.3576606509672654 e-02Y7 + 3.8238123736175217 e-02AtF7 + 2.0697230256177232 e-01Y3

+ 1.0756452207778448 e-01 At Fyg.

HB(3,8,7). ¢ = 1.828, cog = 0.229, and
o =[0,0.20718217223115340, 0.29097088331375731, 0.40039909153603215, 0.53852084630271446,
0.60106447416936848,0.76632817862941627, 0.91524497754031431]T.

Yo = 7.7524862524912430 e-01y,, + 2.0911304381847140 e-01y,, —1 + 1.5638330932404368 e-02y,, 2
+ 3.3320092038559879 e-01 At fy, + 1.1437095752883478 e-01At fr,—1,

Y3 = 6.8633302066772672 e-01y, + 5.4513662560166085 e-02 f,, 4 3.0502380464163606 e-05y,, 2
+ 3.1363647695180913 e-01Y> + 1.7153833892871764 e-01 At F>,

Y, = 6.0294956915719689 e-01yx, + 6.7968244478158968 e-02At fr, + 9.1441978160103528 e-01y,,—2
+ 3.9695898886464298 e-01Y3 + 2.1711022338491229 e-01AtF3,

Y5 = 5.1665264234610353 e-01y,, 4+ 8.1337583516052664 e-02 f,, 4+ 2.4005033416819453 e-04y,, 2
+ 4.8310730731972817 e-01Y3 + 2.6422763648976022 e-01AtFy,

Ye = 5.8556466015419750 e-01y,, + 2.3114273505665700 e-01 f,, 4 2.2872729253596902 e-02y,, —1
+ 1.2509864991026416 e-02 f,, 1 + 1.7323979653098297 e-02y,,—2 + 8.7135630305161908 e-03 fr, —2
+ 3.7423863093910736 e-01Y5 + 2.0468369539846526 e-01 At Fs,

Y7 = 3.4191713189186990 e-01y, + 9.5095924661400266 e-01y,, —1 + 7.5924392758473357 e-03yn—2
+ 1.8700598038223282 e-01 f;, + 5.2011159906676104 e-02 f,—1 + 5.5539450417088254 e-01Y5

+ 3.0376393594757339 e-01 At F§,
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Yz = 1.1363326850737532 e-01y,, + 6.2149856790386038 e-02 f,, 4+ 7.6756748200085712 e-02y,, —1
+ 4.1980847431326157 e-03 f,,—1 + 5.6551924741635156 e-03y,, —2 + 2.8010880832937834 e-01Y>
+ 1.5320092920029513 e-01 At F> + 5.2384598248899694 e-01Y7 + 2.8650898825282928 e-01At F,
Ynt+1 = 2.2414616285513067 e-01y,, + 4.1420414228058998 e-02At fr, + 4.1615518198974411 e-03y, —1
+ 2.2760926710086657 e-03At fr,—1 + 3.8645926596874401 e-04yn—2 + 1.2535638715240446 e-01Y4
+ 6.8561624703917162 e-02AtFy 4 9.8291412642577472 e-02Y5 + 5.3758879769127056 e-02At F5
+ 2.0682681603894068 e-01Yg + 1.1312054265514121 e-01AtFg + 3.4083121022508062 e-01Y3

+ 1.8641205329588703 e-01 At Fy.

HB(4,8,8). ¢ = 1.538, ceg = 0.192, and
o =[0,0.23368675485636115, 0.36350725513869420, 0.49031960833186361, 0.48947493167245792,
0.64507077479935448,0.80327799918322207, 0.98003214772997627]T.

Yo = 6.4546474847411439 e-01yy + 3.1741107005251123 e-01y, —1 + 3.0324271794764990 e-02yy, 2
+ 1.4682597489273576 e-03At fr,—2 + 6.7999096786094055 e-03y, —3 + 4.4226664734388918 e-03At fr,—3
+ 4.1981076775815634 e-01 At fy, + 2.0644440355370802 e-01At fr,—1,
Y3 = 5.7204975600063535 e-01y,, 4+ 9.1739031137173827 e-02f,, 4 7.3128512482644112 e-02y,,—1
+ 4.7562840639905124 e-02 f,,—1 + 4.8596839464650852 e-03yy,,—3 + 2.5158681521488639 e-03 fr, —3
+ 3.4996204757025545 e-01Y> + 2.2761558431192522 e-01 At Fo,
Y, = 6.0520113339487402 e-01yn + 9.2518035631088485 e-02At fr, + 9.6852720995804862 e-04y,, —2
+ 4.3088647601450072 e-04At fr,—o + 3.9383033939516798 e-01Y3 + 2.5614755498079894 e-01 At F33,
Y5 = 6.3994776350311566 e-01y,, 4 3.3777288893505930 e-01 f,, 4+ 1.0648899163235218 e-01y,,—1
+ 6.9260521880789461 e-02 fr,—1 + 3.3870895944620866 e-02y,, —2 + 2.2029656716006023 e-02 f,, 2
+ 3.8555830149051172 e-03y,—3 + 2.1583676590500595 e-01Y + 1.4038039818475362 e-01AtFy,
Y6 = 5.2859357653495542 e-01y,, 4+ 1.1401370030387713 e-01 f,, 4 2.3448581130923671 e-03y,,—2
+ 1.0749109928639197 e-03 f,,—2 + 4.6906156535195265 e-01Y5 + 3.0507800207797564 e-01 At F5,
Y7 = 3.8581660902762860 e-01y,, + 2.5093541859975410 e-01 f,, 4 1.0426883206501705 e-01y,,—1
+ 6.7816528394372161 e-02 f,—1 + 2.3620556837138790 e-02y,,—2 + 7.8981101524640586 e-03 f,, 2
+ 4.2885933382164629 e-04y,, —3 + 4.8586514273639381 e-01Ys + 3.1600706170442672 e-01 At F,
Yz = 2.3131427353780087 e-01y,, + 1.5044698102706502 e-01 f,, 4 8.3735751327340138 e-02y,, 1
+ 5.4461796924834716 e-02 f,, 1 + 1.6120387745938696 e-02y,, —2 + 4.2030300790358950 e-03 At fr, —2
+ 5.7883017581142207 e-04y,, 3 + 3.7647159056082048 e-04At f,, —3 4+ 1.4600830316254704 e-01Y>
+ 1.4600830316254704 e-01Y> + 9.4963912428430206 e-02AtF> + 5.2224245405056202 e-01Y7
+ 3.3966689290029084 e-01 At F77,
Yn+1 = 3.0828674101059494 e-01y,, + 7.7119758745246639 e-02At f,, + 5.1247705886954958 e-03y,, —1

+ 3.3331547238027517 e-03At fr,—1 + 2.6875920819359363 e-03y,, —2 + 1.7480119526367670 e-03 At fr, o
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+ 2.7346332218247476 e-04yy, —3 + 5.7261505381507337 e-02Y3 + 3.7242927044469659 e-02At F3
+ 4.4836843245315194 e-01Y5 + 2.9161917256001402 e-01 At Fg + 1.7799749516192995 e-01Y3

+ 1.1576970745437280 e-01 At F3.

HB(5,8,9). ¢ = 1.223, ceg = 0.153, and
o =[0,0.17739162674285275,0.25102007867404336, 0.34856844954048155,0.47370737396576351,

0.60374397005041947, 0.76821571470950301, 0.89165832852894700] .

Yo = 7.7610069368656864 e-01y,, + 1.8107401575144788 e-01yn—1 + 1.9024372448481035 e-02yy,—2

+ 1.5558034905201492 e-02At f1,—2 + 2.0838855725201940 e-02y,, —3 + 1.7041910088499954 e-02At fr,—3

+ 2.9620623883005234 e-03yy, —a + 2.9019785117900954 e-01 At f,, + 1.4808140794735961 e-01AL fr,—1,
Y3 = 8.0482908790541208 e-01y,, 4+ 5.7130047310679548 e-02 f,, 4+ 1.0012940917179889 e-04y,, 2

+ 8.1885320903523663 e-05 f,—2 + 2.9916274905106115 e-05y,, —3 + 2.4465377266357034 e-05 fr, —3

+ 5.6765757317956030 e-06y,, —4 + 1.9503518983477430 e-01Y2 + 1.5949878501428907 e-01AtF»,

Y, = 7.4495822577025694 e-01yn + 7.7149536543122954 e-02At fr, + 3.4309578761870633 e-04y,, —2

+ 2.8058198787133586 e-04At fr,—2 + 9.4432466438276220 e-05y,,—3 + 7.7226390148197287 e-05At fr, —3,

+ 1.8592122219145097 e-05y5 —4 + 2.5458565385346676 e-01Y3 + 2.0819885122318751 e-01AtF3,
Ys = 6.7807771190788235 e-01y,, + 1.0185385671585835 e-02 f,, + 1.0531479263431690 e-03y,,—2
+ 8.6125901092185062 e-04 f,—2 + 2.6050777566247521 e-04y,, —3 + 2.1304193227970674 e-04 fr, —3
+ 5.4027415207471699 e-05y,, —4 + 3.2055460497490490 e-01Yy + 2.6214792349804306 e-01 At Fy,
Ye = 6.2093551763480770 e-01y,, + 1.8254892961717523 e-01 f,, + 1.6017166879650935 e-02y,, —1
+ 1.3098757505451713 e-02 fr,—1 + 1.5265894870645863 e-02y,, —2 + 1.2484371082401208 e-02 f;, —2
+ 1.4611718964131484 e-03y,,—4 + 7.3216474248262203 e-04 f,—4 + 3.8038745228299600 e-06y,, —5
+ 3.4632024871848238 e-01Y5 + 2.8321893573790141 e-01 At F5,
Y7 = 5.4218005281447990 e-01y,, 4+ 2.0905915335856534 e-01 f,, 4+ 1.8095364251024124 e-02y,, 1
+ 1.4798296732371005 e-02 f,—1 + 2.0529310217713724 e-02y,,—2 + 1.6788765348861815 e-02 fr, o
+ 1.8619126310112206 e-03y, —4 + 9.1553825352006467 e-04 fr, —4 + 4.1733336008577054 e-01Ys
+ 3.4129309657401619 e-01 At Fg,
Yg = 1.4642860095330767 e-01y,, + 1.1974856416003735 e-01 f,, 4+ 1.6464068932915202 e-01y,,—1
+ 1.3464231728726073 e-01 f,—1 + 1.7019074547371504 e-02y,, —2 + 1.3918112493817223 e-02At fr,—2,
+ 1.7419530907733821 e-02y,,—3 + 1.4245603665964805 e-02At fr, —3 + 2.8371231190407816 e-03yy, —4
+2.1731622111534517 e-04At fr,—4 + 3.1392257091847781 e-01Y3 + 2.5672427982087054 e-01 At F3,

+ 3.3773241022491457 e-01Y7 + 2.7619584515212864 e-01 At F77,

Yn+1 = 2.8927892326225457 e-01y,, + 2.3657083026739503 e-01AL fr, + 1.1765397636180749 e-01y,, 1

+ 9.6216822706229069 e-02At fr,—1 + 2.7056138680600039 e-02y,, —2 + 2.2126372427404797 e-02At fr, 2

+ 1.0960339384603930 e-02y,, —3 + 8.9633097323081213 e-03At fr,—3 + 3.2641193827615050 e-03yy, —4
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+ 8.6357934909297757 e-04At fr,—4 + 7.6539234279753426 e-02Y5 + 6.2593396011697860 e-02At F5
+ 2.0249334675863637 e-01Y5 + 1.6559802776535187 e-01 At Fg + 2.7275392188958186 e-01Y3

+ 2.2305676829973772 e-01 At Fy.

HB(6,8,10). ¢ = 1.129, ceg = 0.141, and
o = [0,0.20493520858591369, 0.28755191075293396, 0.39537633148833934, 0.52910482203627929,
0.63011206358460470,0.77167306977743766, 0.95822498755651653]T.

Yo = 6.5934278485397058 e-01yy + 2.7129766867160660 e-01y, —1 + 2.2561117768429083 e-02yy, 2
+ 1.9976182479924671 e-02At fr,—2 + 4.2673939424285171 e-02y,, —3 + 3.7784581855676763 e-02At fr,—3
+ 4.1244892817086038 e-03y,, —5 + 1.9681574312971303 e-03At fr,—5 + 3.7005665994801734 e-01At fr,
+ 2.4021379576086102 e-01At fr,—1,
Y3 = 7.9690582929904408 e-01y,, + 6.6852878927958645 e-02 f,, + 2.0887639667393782 e-04y,, 2
+ 1.8494442777771281 e-04 fr,_o + 7.0545127182818079 e-05y,, —3 + 6.2462434181584023 e-05 f1, —3
+ 1.0815679273108855 e-05y,, —5 + 5.7093373688202266 e-06 f,, _5 + 2.0280393349782605 e-01Y>
+ 1.7956771578348829 e-01 At F>,
Y, = 7.3795086539303412 e-01y, + 9.0478602498241009 e-02At fr, + 6.9641442224658602 e-04y,, —2
+ 6.1662288736050370 e-04At fr,—o + 2.1061519949752520 e-04y,, —3 + 1.8648400763617229 e-04At fr,—3,
+ 3.4481428340611811 e-05y,,—5 + 1.8434707565897658 e-05At fr,—5 4+ 2.6110762355688122 e-01Y3
+ 2.3119127290628558 e-01 At F3,
Ys = 6.7611439061096146 e-01y,, + 1.2409283293381215 e-01 f,, + 3.4808081657280833 e-03y,,—2
+ 2.8291463082360819 e-03 fr,—2 + 2.5522768119857651 e-04yy, —4 + 1.1730195521995916 e-04 f1, —4
+ 3.2014957354211188 e-01Yy + 2.8346850398062506 e-01 At Fy,
Ye = 4.3912480999809772 e-01y,, + 3.8881217792583872 e-01f,, 4+ 2.0149381583842649 e-01y,,—1
+ 1.7840770457735203 e-01 fr, _1 + 4.9854282896529156 e-02y,, —2 + 4.4142238995820711 e-02 f;, _2
+ 2.1724739244445894 e-02y,,—3 + 1.9235631848131148 e-02 f,, 3 + 7.8964242346278544 e-03yy, —4
+ 2.7595589213657667 e-03 fr,—4 + 1.8992722707143276 e-04y, —5 + 2.7971600056080148 e-01Y5
+ 2.4766759905736477 e-01 At F5,
Y7 = 4.3813909501758574 e-01y,, + 3.5829211253408377 e-01 f,, 4+ 1.3205222132099081 e-01y,,—1
+ 1.1692236603980932 e-01 f,_1 + 5.8588248325692510 e-02y,, —2 + 5.1875512186321381 e-02 f;, _2
+ 5.2885025645609688 e-03y,, —3 + 4.6825735036520521 e-03 f,,—3 + 8.7700950069937479 e-03y,, —a
+ 7.7652632296055764 e-03 fr,—4 + 1.3785863145923214 e-03y,,—5 + 3.5578325144958400 e-01Y5s
+ 3.1501946079122317 e-01 At Fg,
Ys = 3.1840343066112459 e-01y,, + 2.8192242505028797 e-01 f,, 4+ 1.3021156069844683 e-01y,, 1
+ 1.1529259871812977 e-01 f,—1 + 3.4600985434197332 e-02y,, —2 + 3.0636584858661858 e-02A¢t fr,—2,

+ 1.7474572346572272 e-02y,, —3 + 1.5472426922138219 e-02At fr,—3 + 4.0817513115598489 e-03yy, —4
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+ 3.7954488095818866 e-04At fr,—4 + 2.8788271497124708 e-04yy, —5 + 2.5489861389443879 e-04At fr, 5
+ 6.4039737828785984 e-02Y> + 5.6702398434554102 e-02At F> + 4.3090007900434185 e-01Y7
+ 3.8152979374319551 e-01 At F7,

Yn+1 = 4.2210499879829200 e-01y,, + 1.0470152640211661 e-01 AL fr, + 1.2276097197837371 e-03y,—1
+ 1.0869565962217109 e-03At fr,—1 + 4.3342452063532613 e-03y,,—2 + 3.8376499800913989 e-03At fr,—2
+ 4.6636785685590012 e-04y,, —4 + 3.8350618707223751 e-04At fr,—4 + 5.8155782931149167 e-05y,, —5
+ 6.7885924613408699 e-02Y3 + 6.0107909183184344 e-02AtFy + 3.4732819124494774 e-01Ys

+ 3.0753313731823845 e-01 At Fg + 1.5659450677742751 e-01Y3 + 1.3865272433961967 e-01 At Fy.

HB(8,8,11). Here ¢ = 1.014, ceg = 0.127, and
o =[0,0.15268988968167027,0.21725324947576041, 0.28998857391287741,0.39819129640841544,
0.53457208078593688, 0.68259864745713894, 0.849797361 16107674]T.

Y> = 8.1103704590185588 e-01y,, + 2.4324163373012761 e-01At f, + 1.4208568406076721 e-01y,—1
+ 1.4007611169626422 e-01At fr,—1 + 1.5066264171139909 e-02y,, —2 + 1.4853176214286525 e-02At fr,—2
+ 2.8099548818331672 e-02y,,—3 + 2.7702126114323208 e-02At fr, —3 + 2.4287954904775805 e-03y,, —5
+ 2.3944441036439445 e-03At fr,—5 + 1.0382748777756081 e-03y,, —6 + 1.0235901576721863 e-03At fr—¢
+ 2.4438667965197313 e-04y,, 7,
Y3 = 8.5511450738191930 e-01y,, + 5.2639045593528763 e-02 f,, 4+ 9.3925044979080267 e-05y,, —2
+ 9.2596627017957431 e-05 f,, _2 + 3.2067262659279082 e-05y,, 3 + 3.1613723055544038 e-05 fr, —3
+ 5.6716673029924927 e-06y,, —5 + 5.5914507354467365 e-06 fr, —5 + 1.4153869199331039 e-06y,, —6
+ 1.3953685594756185 e-06 fr,—g + 1.4475198995218319 e-01Y2 + 1.4270470700008570 e-01 At F3,
Y, = 8.2352428913866937 e-01yn + 8.8833394040492286 e-02At fr, + 2.5814485463276876 e-03y,,—1,
+ 2.5449381287343999 e-03At fr,—1 + 2.6320601231020584 e-03y,, —2 + 2.5948338865528918 e-03At fr, —2,
+ 3.6670179053706922 e-04y, —4 + 3.6151538636730151 e-04At f,—4 + 9.1716730787826345 e-05y,—5,
+ 9.0419545861898491 e-05At fr, —5 + 2.1055466132365234 e-05y,, —7 + 1.1435609446183388 e-05At fr, —7
+ 1.7078272820444360 e-01Y3 + 1.6836728253021724 e-01 At F3,
Y5 = 7.6032116269499905 e-01y, + 9.5881297974883095 e-02 f, + 9.6180598693505965 e-04yy, —2
+ 9.4820279570481864 e-04 f,—2 + 2.6578471794413635 e-04yn —3 + 2.6202562266568923 e-04 f1, —3
+ 5.6173647859647601 e-05y,, 5 + 5.5379162397595059 e-05 fr, —5 + 1.2155568501817746 e-05y,, —6
+ 1.1983647630988639 e-05 fr,—6 + 3.9299384314209267 e-06y,, 7
+ 2.3837898744532887 e-01Y3 + 2.3500750193209827 e-01 At Fy,
Y = 6.9983466985186893 e-01yn + 1.2956442460318052 e-01 f,, + 2.8967198527552257 e-03yy, —2
+ 2.8557504320688007 e-03 fr,—2 + 6.7508210352595736 e-04yn, —3 + 6.6553415822813205 e-04 f1, —3
+ 1.6643027134335468 e-04y,, 5 + 1.6407638413705952 e-04 fr, 5 + 3.1802892674455783 e-05y,, —6

+ 3.1353092156885634 €-05 fr,_¢ + 1.1055821875271658 e-05y,, 7
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+ 2.9638423920595686 e-01Y5 + 2.9219236315370234 e-01At F5,

Y7 = 6.0574881606740139 e-01y,, + 2.3297431473474603 e-01 f,, 4 3.3753836873017876 e-02y,,—1
+ 3.3276443402842873 e-02 fr,—1 + 2.7993139590496700 e-02y,, —2 + 2.7597221873039132 €-02 f,,—2
+ 5.3489846227695956 e-03y,, —a + 4.3913218505049869 e-03 fr,—4 + 2.3824913067828989 e-04y,, —6
+ 6.0472984562104276 e-05 fr,_g + 2.5154238491232192 e-05y,, —7 + 2.4798472441638635 e-05 fr, —7
+ 3.2689181947714496 e-01Yg + 3.2226846300780199 e-01At Fg,

Yg = 3.8965567608777574 e-01y,, + 3.8414462630458424 e-01 f,, 4+ 1.5375660107791925 e-01y,,—1
+ 1.5158196245455205 e-01 f,—1 + 6.4127244057980148 e-02y,, —2 + 6.3220267832173022 e-02At fr,_2,
+ 1.2244580326318902 e-02y,,—3 + 1.2071400527091672 e-02At fr, —3 + 1.3095278699834218 e-02y,,—4,
+ 1.2910067146998279 e-02At f,—4 + 1.9449899420479685 e-03y,,—6 + 1.6901811414378354 e-03At fr ¢,
+ 2.6584451991244312 e-04y,, —7 + 3.6490978528821150 e-01Y7 + 3.5974872613647962 e-01At F77,

Yn+1 = 1.7329798410746522 e-01y,, + 1.7084696420360562 e-01 At f, + 1.8707063834335549 e-01y,—1

+ 1.5607925894041397 e-01At fr,—1 + 1.6136705664081385 e-02y,, —2 + 1.5908478042340208 e-02At fr,—2
+ 2.5055945296315552 e-02y,, —3 + 2.4701569445104252 e-02At fr, —3 + 3.3438361249250393 e-03y,, —5
+ 3.2965429671907086 e-03At fr,—5 + 4.0917492363145604 e-04y,, —6 + 4.0338780563844469 e-04At fr, 6
+ 3.6232928533262959 e-04y,,—7 + 1.2710361897120864 e-04At fr,—7 + 2.6100514217537768 e-01Y4

+ 2.5731364627150821 e-01AtFy + 3.3331824407951544 e-01Yg + 3.2860399622045328 e-01 At Fy.

HB(8,8,12). Here ¢ = 0.725, cog = 0.091, and
o =[0,0.1.7212403254650316, 0.244256 75249794856, 0.34035459582662780, 0.45417142083423701,
0.60344726903342638,0.76962419428759421, 0.89834625032999504]T.

Y2 = 7.2166103628541844 e-01yn + 2.9897481594889874 e-01At fi, 4+ 1.7182396066394406 e-01yy, —1
+ 2.3686652409203576 e-01At fr,—1 + 3.0492336407939545 e-02y, —2 + 4.2034962460909459 e-02At fr, o
+ 5.7326702973902084 e-02y,, —3 + 7.9027260334443905 e-02A¢t f,,—3 + 1.2816087284349817 e-02y,—5
+ 1.7667512934597937 e-02At fr,—5 + 2.7218711957034138 e-02yy, —6 + 3.7522134087774545 e-03At fr,—6
+ 3.1580051887426901 e-03y, —7 4+ 1.1071856855378482 e-03At fr, 7,
Y3 = 8.8230568173627133 e-01yn + 6.2570762540582803 e-02 f), + 1.6354825764457442 e-04yy, —2
+ 2.2545812097385896 e-04 f,—2 + 7.6970681542182055 e-05y,, —3 + 1.0610730728963756 e-04 f1, —3
+ 2.9037647634409629 e-05y,, —5 + 4.0029613078377147 e-05 fr,—5 + 2.9177568410225919 e-06y,, —6
+ 4.0222499726361334 e-06 f,,—6 + 6.2588277221591309 e-06y,, —7 + 2.5435364972131703 e-06 fr, —7
+ 1.1741558509234430 e-01Y> + 1.6186230027284165 e-01 At Fo,
Y, = 8.4312853626751461 e-01yn + 8.8726925375650995 e-02At fi, 4+ 5.9591987710203216 e-04yy,, —2
+ 8.2150050191533868 e-04At fr,—2 + 2.5560559777943544 e-04y,,—3 + 3.5236301881607464 e-04At fr, —3,
+ 1.1778804485958780 e-04yy, —5 + 1.3533550547256473 e-04At fr,—5 + 1.6144699424334645 e-05y,,—7,

+ 7.4860357153000911 e-06 At fr,—7 + 1.5588600551332013 e-01Y3 + 2.1489538559030735 e-01 At F3,
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Ys = 7.9642457262950050 e-01y,, + 1.4409041503285133 e-01 f,, + 5.1660441506838160 e-03y,, —1
+ 7.1216081654160400 e-03 fr,—1 + 7.7807141267142842 e-03y, —2 + 1.0726040204329599 e-02 f;, _2
+ 2.3759365866667559 e-03y,, —4 + 3.2753280658425971 e-03 f,,—4 + 2.3440300821086580 e-05y,, —5
+ 3.2313436133750819 e-05 fr,—5 + 5.3763191003535675 e-04yn, —6 + 4.3743238670981973 e-04 f1, —6
+ 6.4232479795509141 e-05y,, —7 + 1.8762742781578270 e-01Y, + 2.5865226525638890 e-01AtFy,

Ye = 7.4764957307865498 e-01y,, + 1.7701607714521619 e-01 f,, 4+ 3.3218501253453204 e-04y,, —1
+ 4.5793094845726591 e-04 fr,—1 + 9.0107500421638519 e-03y5, —2 + 1.2421696215721046 e-02 f1, _2
+ 1.7416175013016521 e-03y,, —4 + 2.4008926475511355 e-03 f,—4 + 4.3039648929302639 e-04y,,—5
+ 5.9331958131056471 e-04 f,—5 + 4.4731057590959722 e-04yp, —6 + 1.5076426237399762 e-04 fr, —6
+ 2.4038816730014245 e-01Y5 + 3.3138515374234367 e-01 At F5,

Y7 = 6.1745548221487967 e-01y,, + 3.1312805025999069 e-01 f,, + 4.2412176225693266 e-02y,, —1
+ 5.8466960736675185 e-02f,,—1 + 4.9944968347668012 e-02y,,—2 + 6.8851230076908382 e-02 f;, —2
+ 1.0145303110375972 e-04y,,—3 + 1.3985725124302436 e-04 f,—3 + 1.5993482674454652 e-02y,, —4
+ 2.2047685518281849 e-02 f,—4 + 3.5923397458610504 e-03yn, —6 + 2.9894235900082373 e-03 fr, —6
+ 4.4453715536715897 e-04y, —7 + 2.7005556060497254 e-01Y5 + 3.7228289759502070 e-01 At Fg,

Yg = 2.4196889423575463 e-01y,, + 3.3356425200855944 e-01 f,, 4+ 2.2016436475752582 e-01y,,—1
+ 3.0350579516113685 e-01 fr,—1 + 6.4245402901202134 e-02y,, —2 + 8.8564977872107875 e-02 fr, —2
+ 5.9217191572622209 e-02y,,—3 + 8.1633378023060463 e-02At fr, —3 + 1.1547451078126639 e-02yp, —4
+ 1.5918644806170210 e-02At fr, —4 + 1.4359310727332320 e-02y,,—5 + 1.9794911065941997 e-02At fr, 5,
+ 8.1253686364574258 e-03y, —¢ + 1.9506757245185613 e-03At fr,—6 + 2.1207276385246167 e-05y,, 7
+2.9235118451593681 e-05At fr,—7 + 1.6418249474769908 e-01Yy + 2.2633244337619918 e-01 At Fy,
+ 2.1616831406689457 e-01Y7 + 2.9799707196835323 e-01 At F7,

Yn+1 = 5.5292046391219385 e-01y, + 1.0671296270883678 e-01 At f1, + 2.7461390628635146 e-04y,, —1

+ 3.7856676797598521 e-04At fr,—1 + 2.7296960735284474 e-03y,, —2 + 3.7630003304890587 e-03At fr, o
+ 6.8313005651956388 e-04yn,—a + 9.4172338575675574 e-04At fr,—a + 5.1195289480250074 e-05y,,—5
+ 7.0574850109464491 e-05At fr,—5 + 1.6190146908812175 e-04y,—6 + 1.1100475610122682 e-04At fr,—6
+ 1.4327702870586996 e-05y,, —7 + 2.0868116163691602 e-01Y5 + 2.8767571885448334 e-01AtF5
+6.2831970742143431 e-02Y5 + 8.6616502460049746 e-02At Fg

+ 1.7165153921097320 e-01Y3 + 2.3662883389978145 e-01 At Fg.
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A.4 Eight canonical HBgrks5(k, 8, p) methods consid-

ered in the thesis

HB(2,8,5). c(HB(2,8,5)) = 3.579, ceg(HB(2,8,5)) = 0.447, and
o = [0,0.19404251163017974, 0.40401651468815830, 0.55883284598288607, 0.56369942258165218,
0.52394260398583981, 0.71711922603984812, 0.88706348512405175] .

Yo = 8.5330772947640868 e-02y,,—1 + 9.1466922705235909 e-01yy,
+ 2.3839138313946667 e-02At fr,—1 + 2.5553414626387394 e-01AL f,,

Y3 = 5.8121281984419446 e-02y,, 1 + 1.6237533451860981 e-02At fr, 1
+9.4187871801558054 e-01Y> + 2.6313575112595966 e-01 At Fy,

Yy = 1.9712986864712356 e-01yy, + 1.0159588080993598 e-02At f,
+ 8.0287013135287633 e-01Y3 + 2.2430046568547937 e-01 At F3,

Y5 = 4.9121434066075126 e-01y,, + 1.3723216378212261 e-01AtL f,
+ 5.0878565933924869 e-01Y, + 1.4214112079569804 e-01AtFy,

Y = 5.6613523163119228 e-01yx, + 1.5816305917603155 e-01 At fr,
+ 4.3386476836880766 e-01Y5 + 1.2121022540178913 e-01AtF5,

Y7 = 2.4379466606894672 e-02y,—1 + 9.1646079651563017 e-02yy,, + 5.7845025808415593 e-03At fr,—1
+ 2.5603466290937710 e-02At f, + 8.8397445374154238 e-01Y5 + 2.4695884662465947 e-01 At Fg,

Ys = 8.5066501387783613 e-03y,,—1 + 1.1026153152332141 e-01y,, + 2.3765307900248875 e-03At fr,—1
+ 3.0804126224251160 e-02A¢t f,, + 3.0113037742332344 -02Y2 + 8.4127782626912673 e-03At F>
+ 8.5111878059556789 e-01Y7 + 2.3777984930085327 e-01At F7,

Yn+1 = 1.7950283215483376 e-01Y> + 5.0148295810117142 e-02AtF> + 7.3789956884862590 e-02Y3

+ 2.0614942623779831 e-02AtF3 + 1.7607159013146464 e-02Ys + 4.9189698455867070 e-03At Fs

+ 7.2910005194715732e-01Yg + 2.0369107629833699 e-01 At Fy.

HB(2,8,6). c(HB(2,8,6)) = 1.928, coz(HB(2,8,6)) = 0.241, and
o = [0,0.25363940776759103, 0.41769862843541011, 0.55858629218273137,
0.44857413336445040, 0.60876081294741335, 0.77828368655151881, 1.0] 7.

Yy = 2.2466032447218601 e-01lyy,—1 + 7.7533967552781402 e-01yp
+ 8.0163687649745852 e-02At fr, 1 + 3.9813604459003121 e-01At fp,
Y3 = 1.5727894480995694 e-02y,, —1 + 4.4955319448393410 e-01y, + 8.1555750585504752 e-03At fr, —1

+ 1.2370905625165185 e-02At fr, + 5.3471891103507030 e-01Y>2 + 2.7727425431562364 e-01 At Fy,
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Yy = 4.8652494932663776 e-01yy, + 7.7850048923667162 e-02At f1,
+ 5.1347505067336219 e-01Y3 + 2.6625841885699791 e-01AtF3,

Y5 = 3.3099298116698636 e-02y,—1 + 7.7828210986359747 e-01y, + 2.7850699521087263 e-01AtL fr,
+ 1.8861859201970396 e-01Y, + 9.7806676317262586 e-02AtFy,

Y = 4.4391622919228768 e-01y, + 7.0963184319293438 e-02At fr,
+ 5.5608377080771221 e-01Y5 + 2.8835283306001480 e-01AtF5,

Y7 = 7.5572930600594206 e-03y,,—1 + 3.9542431237669295 e-01y,, + 1.1282041854170644 e-01At fr,
+ 5.9701839456324768 e-01Y5 + 3.0957915785098955 e-01 At Fg,

Yg = 2.9222138699529565 e-01yy, + 8.2134460325541475 e-02At f,,
+ 7.0777861300470457 e-01Y7 + 3.6701299148283639 e-01 At Fr7,

Yn+1 = 8.5291473379695698 e-04y,,—1 + 2.2105846504903937 e-01yn + 4.1781207986124481 e-02At f1,

+ 1.6086912766711807 e-02Y3 + 8.3417411458222290 e-03AtF3 + 1.7061295802146498 e-01Y,
+ 8.8469997480380536 e-02AtFy + 3.1027955846040262 e-01Ys + 1.6089300644885274 e-01At Fg
+ 7.4043943063124507 e-02Y7 + 3.8394899966554236 e-02At Fr7

+ 2.0706524790545994 e-01Y3 + 1.0737204355935072 e-01 At Fyg.

HB(3,8,7). c(HB3,7) = 1.985, cor(HB3,7) = 0.248, and
o = [0,0.23238423077254125, 0.43157605300450452, 0.51665386361543786, 0.51477152933306880,
0.61128565004088331, 0.80299254893179406, 0.97139112591737997] T .

Yo = 1.4925968280605849 e-02y,, —2 + 2.3495988386171324 e-01y,,—1 + 7.5011414785768094 e-01yy,
+ 7.5011414785768094 e-01yy, + 9.8749233646170027 e-04At fr, 2
+ 1.1835567846327205 e-01At fr, —1 + 3.7785288039573245 e-01At fry,
Y3 = 1.2535802855249516 e-03y,,—2 + 6.0712465229408402 e-02y,, 1 + 3.0740500785919228 e-01yy,
+ 3.0582518578506329 e-02At fr, —1 + 6.3062894662587432 e-01Y2 + 3.1766493756190683 e-01 At F,
Ys = 1.7052069812097479 e-03yy,—2 + 5.7947192464619834 e-01y,, + 1.2833789695649112 e-01A¢t fr,
+ 4.1882286837258076 e-01Y3 + 2.1097246018109728 e-01 At F3,
Y5 = 4.8131554327040214 e-03y,,—2 + 6.8105088341897568 e-01y,, + 4.0624591870494882 e-04At fr, 2
+ 2.0345321607400946 e-01 At f,, + 3.1413596114831965 e-01Y, + 1.5823882017793225 e-01AtFy
Ys = 1.5200956268346024 e-02y,, 2 + 8.6164082778426798 e-02y,, —1 + 4.3396462911064942 e-01yy,
+ 6.5324392705808148 e-03At fr,—2 + 4.3403189977776466 e-02At fr, 1 + 2.1859977653752233 e-01At f1,
+ 4.9399853608364526 e-02Y> + 2.4884048688266474 e-02At F>
+ 4.1527047823421243 e-01Y5 + 2.0918302473329856 e-01At F5,
Y7 = 3.4119928157359449 e-03y,, 2 + 8.4215417390459360 e-02y,, —1 + 2.5130064617084391 e-01yy,

+ 4.2421594267478636 e-02At fr,—1 + 1.2658696449354065 e-01 At fr, + 3.1882440663148194 e-02Y>
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+ 1.6060051757485608 e-02AtF» 4 6.2918950295979903 e-01Ys + 3.1693985067086861 e-01 At Fg,
Yg = 4.5802256267512779 e-03y, —2 + 6.8014280255773163 e-03y, —1 + 3.5211663048013697 e-01yy,

+ 3.4260641231843789 e-03At fr,—1 + 1.5219759482972633 e-01At fr,
+ 6.3650171586752868 e-01Y7 + 3.2062321101961477 e-01AtF7,

Yn+1 = 7.4154625332934973 e-04y,, 2 + 6.7706372245015384 e-03y,, —1 + 2.0258451448699699 e-01y,
+ 2.2909414626356983 e-04At fr,—o + 3.4105539599526419 e-03At f,,—1 + 4.3547572463320666 e-02At f1,
+ 7.3590775403134828 e-02Y3 + 3.7069673377105303 e-02At F3 + 5.0524412028802479 e-02Y,
+ 2.5450519324168110 e-02AtFy + 1.2745500705109852 e-01Y5 + 6.4202550602009439 e-02At F
+ 1.3592702168921109 e-01Ys + 6.8470134599602564 e-02AtFg + 2.0360650705769195 e-01Y7

+ 1.0256213054877544 e-01 At F7 + 1.9879957880523283 e-01Y3 + 1.0014075016122419 e-01AtFy.

HB(3,8,8). ¢(HB3,8) = 1.2768075760100959, c.s(HB3,8) = 0.142, and
o = [0,0.25296754862842130, 0.49225600819417081, 0.38258434445584055, 0.52068124026466622,
0.66409362807151318, 0.82737810802943035, 0.99952769821951859] T .

Yo = 8.0431323301685648 e-02y,, 2 + 3.2481755805462698 e-01y,—1 + 5.9475111864368724 e-01yy,
+ 4.6581108212267103 e-01 At fr, + 1.8438464137399815 e-02At f,,—2 + 2.5439820702634880 e-01At fr, —1,
Y3 = 2.4171274094767832 e-02y,,—2 + 1.6721827271891193 e-01y,,—1 + 2.8639801559108519 e-01yy,
+ 1.3096591519409165 e-01 At f,,—1 + 3.5749571242699091 e-02At fr,
+ 5.2221243759523517 e-01Y> + 4.0899854246408857 e-01 At F>,
Y, = 1.6800381323275146 e-02y,, —2 + 8.6844142788677892 e-01y, + 9.2813613590216702 e-03At fr,—2
+ 2.6053433474971283 e-01At f, + 1.1475819078994613 e-01Y3 + 8.9879002087812424 e-02At F3
Y5 = 9.1006378797032876 e-03yy —2 + 1.0279733503699048 e-01y,, —1 + 5.4917319650357377 e-01yy,
+ 6.0407197050953022 e-02A¢ f,—1 + 1.8615358628248924 e-01AtL fr,
+ 3.3892883057973244 e-01Y, + 2.6545020326308943 e-01 At Fy,
Ye = 1.5646584710065064 e-04y,, 2 + 4.4496943168820677 e-02y,, —1 + 5.6844782633522883 e-01yyp,
+ 1.9228056514734587 e-01 At fi, + 1.2254457918364704 e-04At f,,—2 + 1.2029047152794712 e-02At fr,—1
+ 3.8689876464884976 e-01Y5 + 3.0302041742098068 e-01 At F5,
Y7 = 3.8029033753200900 e-04y,,_2 + 9.8568707329330651 e-02y,, 1 + 4.6604816598757948 e-01yy,
+ 2.9944054323220566 e-02At fr—1 + 2.6718504127925830 e-01AL fr,
+ 4.3500283634555797 e-01Yg + 3.4069568862122601 e-01At Fg,
Yg = 4.0244510078320417 e-02y,, —1 + 2.8757414798790559 e-01y, + 1.2228665877155598 e-02At fr, 1
+ 1.2228665877155598 e-02At fr, —1 + 7.6434139892082836 e-02At f,, + 2.2891887418237039 e-01Y>
+ 1.7929003436658830 e-01 At Fo + 4.4326246775140354 e-01Y7 + 3.4716465979670741 e-01 At F,

Yn4+1 = 4.6991204294326554 e-04y,, —2 + 2.5355314573089469 e-02y,, —1 + 3.7576148261446241 e-01y,,



A.4. Eight canonical HBgks (%, 8, p) methods considered in the thesis 138

+ 8.0519039451696986 e-03At fr, —1 + 1.2273329474329865 e-01 At f,, 4+ 9.8829402744482122 e-03Y3
+ 7.7403521565336227 e-03At F3 + 3.7697941785698019 e-02Yy + 2.9525155155720927 e-02At Fy
+ 4.2640032452885113 e-01Y5 + 3.3395817235147696 e-01 At Fg

+ 1.2443208418050744 e-01Y3 + 9.7455628019803939 e-02At Fg.

HB(4,8,9). c(HB(4,8,9)) = 1.1072614332708535, ccq(HB(4,8,9)) = 0.138, and
o = [0,0.25155135020798175, 0.33714858504761824, 0.42083600219067197, 0.52197758259043459,
0.61235929113974452, 0.80010716066276477, 0.92838294990938930] T .

Yo = 2.4878773640400584 e-03y,, —3 + 1.0886557083497138 e-01yy —2 + 3.5232127968034910 e-01y, —1
+ 2.4257986119599170 e-02At fr, —2 + 5.3632527212063930 e-01y,, + 2.2468743959507928 e-03At fr,—3
+ 3.1819159332551755 e-01 At fr, 1 + 4.8437094980932627 e-01At fr,

Y3 = 2.9653728741651749 e-04yy —3 + 1.7322332295411080 e-03y,,—2 + 7.3993714823404610 e-04yy,—1
+ 6.6825875624355879 e-04At fr,—1 + 7.8294205493188451 e-01y,, + 1.5644302036458392 e-03At fr,—o
+9.2574322636738746 e-02At f, + 2.1428923740292397 e-01Y>2 + 1.9353084191681177 e-01AtF>,

Yy = 1.3328822642268510 e-03y,, —3 + 7.5405609181160536 e-03y,, —2 + 5.4406075373148559 e-03yy —1
+ 7.5518365192625836 e-01yy, + 6.8100998477308248 e-03At fr,—2 + 4.9135708820303506 e-03At fr,—1
+ 1.4774585638289806 e-01At f, + 2.3050229735408373 e-01Y3 + 2.0817332784108561 e-01AtF3,

Y5 = 6.6563925837921211 e-04y, 3 + 3.7212264758549655 e-02y,, —2 + 9.3714259258191338 e-02yy, 1
+ 6.0780006835904099 e-01yy,, + 1.2768430013380214 e-02At fr,—2 + 8.4636072784869912 e-02A¢ fr,—1
+ 2.4967320077254984 e-01At fr, + 2.6060776836583893 e-01Y,4 + 2.3536245419115054 e-01 At Fy,

Ye = 5.4494044120533287 e-03y,, —3 + 3.4995199298042602 e-02y,, —2 + 4.2704083918843797 e-02y5, —1
+ 4.2704083918843797 e-02yy, —1 + 6.4181541863574953 e-01y,, + 2.8464632091918449 e-02At f1,_2
+ 3.8567300039247104 e-02At fr, 1 + 2.8241457003403286 e-01 At fy,
+ 2.7503589373531079 e-01Y5 + 2.4839291378807801 e-01 At F5,

Y7 = 2.5011934342737919 e-03y, —3 + 5.5906845523761711 e-02y,, —2 + 1.9404609815047866 e-01y,, —1
+ 3.3859835585876863 e-01yy, + 2.2589005262156191 e-03At fr,—3 + 1.0409742223035454 e-02A¢t fr,—2
+ 1.7524867417920084 e-01At f,,—1 + 3.0579802175403870 e-01At fr,
+ 4.0894750703271721 e-01Ys + 3.6933238596117729 e-01At Fg,

Yg = 4.0142804521193960 e-03y,,—3 + 6.0909105818209096 e-02y,, —2 + 1.3352939198048103 e-01y, —1
+ 3.2178057775983659 e-01y,, + 3.0406855944862508 e-02At fr, —2 + 1.2059427698663250 e-01AL fr, 1
+ 2.9060939728506185 e-01At fr, + 5.1061882695041964 e-02Y>2 + 4.6115471162221387 e-02At I,
+ 4.8386497105927491 e-03Y3 + 4.3699252635390397 e-03At F3 + 1.1772456578284952 e-01Y5
+ 1.0632047883677373 e-01AtF5 4 3.0614154580086955 e-01Y7 + 2.7648533273350501 e-01 At F7,

Yn+1 = 1.4180351748984421 e-03yy 3 + 4.2143433044927181 e-03y, —2 + 7.3643693912603114 e-03y, —1

+ 4.1454707028866394 e-01y,, + 3.7401714145701638 e-04At fr, —3 + 3.8060959931057389 e-03At fr, o
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+ 6.6509761561061032 e-03At fr,—1 + 1.0109547389376111 e-01 At fr, + 3.2294689720816705 e-01Y5
+ 2.9166273429589340 e-01 At F5 4 7.0881911533472647 e-02Y7 + 6.4015515580712751 e-02AtF7

+ 1.7862737309904494 e-01Yg + 1.6132357520245166 e-01 At Fyg.

HB(5,8,10). ¢(HB(5,8,10)) = 0.97102752134084724, c.(HB(5,8,10)) = 0.121, and
o = [0,0.24958883339246415, 0.42701272438250404, 0.49116336919436759, 0.46622895557249333,
0.63668736986589192, 0.83859323108451345, 0.96251481297888763] .

Yo = 4.9957599570804399 e-03yy,—4 + 2.3867703762249295 e-02y,,—3 + 1.1623750837352728 e-01y,,—2
+ 3.7062934480738507 e-01y, —1 + 4.8426968309975776 e-01yy + 2.4579842731225043 e-02At fr,—3
+ 3.9292914311878618 e-02At fr,—2 + 3.8168778604297438 e-01 At fr, 1 + 4.9871880297589527 e-01 At fr,,
Y3 = 4.2990452823252409 e-03y,, —4 + 2.1276230373848806 e-02y,, 3 + 4.0613421411792097 e-03y, —2
+ 1.2082207981330481 e-01yy,—1 + 5.3367948991826664 e-01y,, + 2.1911047736803007 e-02At fr, —3
+ 4.1825201159809509 e-03At fr,—2 + 1.2442703956162555 e-01 At fr, _1 + 8.2340013262737599 e-02At fy,
+ 3.1586181247107531 e-01Y>2 + 3.2528615876398259 e-01 At Fa,
Y4 = 6.3243190428049459 e-04yy, —4 + 7.9640499357823604 e-03y,, —3 + 3.1417925777444164 e-02y,, 2
+ 3.1417925777444164 e-02y,, —2 + 2.5976334121008310 e-01 At f,, + 3.8146737214488240 e-02y,,—1
+ 3.8146737214488240 e-02y,,—1 + 7.2517275923146729 e-01y,, + 6.5130172974623617 e-04At fr,—4
+ 3.2355340180328360 e-02At fr, _2 4 3.9284918682647808 e-02At fr, —1
+ 1.9666609593653750 e-01Y3 + 2.0253400816587602 e-01 At F3,
Y5 = 2.6760347853459865 e-03yy, —4 + 1.0863175574600597 e-02y,, —3 + 5.4893345712409669 e-02y,, —2
+ 5.6531194539790150 e-02At fr,—2 + 6.0754767616767714 e-02y,, 1 + 7.4123068994465302 e-01y,,
+ 1.8293072867059388 e-03At fr,—4 + 6.2567503270014688 e-02At fr, 1 + 3.6204183555279384 e-01At fr,
+ 1.2958198636622298 e-01Y, + 1.3344831481942879 e-01 At Fy,
Y6 = 2.0754355220173968 e-03y,, —4 + 9.9730401759130158 e-03y,,—3 + 3.8849179501725811 e-03y, —2
+ 1.0270605061885065 e-02At fr, —3 + 5.0219517181393135 e-02y,,—1 + 5.9613180834611079 e-01y,,
+ 4.0008319690136816 e-03At fr,—2 + 5.1717913321393104 e-02At fr,_1 + 1.6166392506298297 e-01At fy,
+ 3.3771528082439317 e-01Y5 + 3.4779166748853590 e-01 At F5
Y7 = 1.9608993238511814 e-03yy,—4 + 8.9390249470190468 e-03y,, —3 + 7.0820993991796144 e-03y,, —2
+ 3.6077646240821409 e-02y,, —1 + 5.4667596049004419 e-01yy, + 9.1573341892354047 e-03At fr,—3
+ 7.2934074920968945 e-03At fr,—2 + 3.7154092389681648 e-02At fr, —1 + 2.0450714080792248 e-01 At f1,
+ 3.9926436959908462 e-01Ys + 4.1117719202001485 e-01 At Fg,
Yg = 4.6616480075610230 e-04y,, —4 + 2.8134173558822913 e-02y,, 3 + 6.2852012068878693 e-02y,, 2
+ 1.4929250845196435 e-01y,, —1 + 2.3329704249840494 e-01y,, + 4.8007372655349252 e-04At fr,—4
+ 7.0903473726891715 e-03At fr,—3 + 6.4727323054746433 e-02At fr,—2 + 1.5374693834198766 e-01 At fr,—1

+ 2.4025790965868354 e-01At fr, + 1.6378732074427735 e-01Y> + 1.6867423131129278 e-01AtF»
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+ 7.7259260620153106 e-02Y5 + 7.9564439649938395 e-02At F5
+ 2.8491151725674269 e-01Y7 + 2.9341240180640965 e-01 At F7,
Ynt1 = 7.0185277566430079 e-05y,, —4 + 5.1010981648964508 e-03y,, —3 + 1.0945795978915027 e-02y,, —2
+ 2.1181421753514090 e-02y,, —1 + 4.5233021109160843 e-01y,, + 1.6679706370347812 e-03At fr,—3
+ 1.1272384910162456 e-02At f,—2 + 2.1813410318448703 e-02At fr,—1 + 1.4536539995598871 e-01At fr,
+ 1.4182112368892130 e-01Y3 + 1.4605263040648636 e-01AtFy + 1.9507160863566964 e-01Ys
+ 1.9507160863566964 e-01Ys + 2.0089194626152740 e-01AtFg + 6.3701297148469727 e-02Y7

+ 6.5601948192475057 e-02AtF7 4+ 1.0977725826043891 e-01Y3 + 1.1305267445854937 e-01AtFy.

HB(7,8,11). ¢(HB(7,8,11)) = 1.0785142576992566, coq(HB(7,8,11)) = 0.135, and
o = [0,0.23852412645835103, 0.34289387913490704, 0.46930408292864162, 0.52758167512889376,
0.61814438712197051, 0.78984785222720000, 0.96683498505714671]7 .

Yo = 2.5946770415249232 e-04yy ¢ + 7.2545656889022826 e-03y, —5 + 6.5530317423295140 e-02y,, 3
+ 3.4428205021721510 e-02y,, 2 + 3.8264506557453076 e-01y, —1 + 5.0988237858739793 e-01yn,
+ 4.2117465668472572 e-03At fr,—5 + 6.0759806331246724 e-02At fr, —3 + 3.1921882141053542 e-02At f1, 2
+ 3.5478906546011674 e-01At fr, 1 + 4.7276368851637224 e-01AL fp,
Y3 = 2.6734751055294141 e-05y, —¢ + 1.9743959979604529 e-04y,, 5 + 3.0849794661314076 e-03y, —3
+ 1.6542139395870611 e-02y,,—1 + 7.4751313789655527 e-01y,, + 2.4788500350775258 e-05At fr,—6
+ 6.2838397890436484 e-05At fr,—5 + 2.8603974811723370 e-03At fr,—3 + 1.5337895885733754 e-02At fr,—1
+ 8.0363406978795196 e-02At fr, + 2.3263556889059139 e-01Y> + 2.1570004033777157 e-01 At F5,
Y4 = 2.4120309661236624 e-05y,, —¢ + 4.7291316019706497 e-04y,, 3 + 4.8327392388944823 e-04y,,—2
+ 7.0993109585855541 e-01y, + 1.6570301770652821 e-05At fr,—6 + 4.3848577505679626 e-04At fr, 3
+ 4.4809229033317870 e-04At fr, 2 4+ 1.0376086291231772 e-01AtL fr,
+ 2.8908859674769694 e-01Y3 + 2.6804337048301613 e-01 At F3
Y5 = 4.7899190522712981 e-04yy, —¢ + 2.1572285347400129 e-03y,, —5 + 4.8753461944363551 e-03y,,—4
+ 7.8131877588771166 e-03y,, —3 + 4.7596642918370527 e-02yy, —2 + 1.0099681717571710 e-01y, 1
+ 6.2434200822503372 e-01y, + 2.0001854582265112 e-03At fr, 5 + 4.5204281349388005 e-03At f1,—4
+ 7.2443991380740941 e-03At fr,—3 + 4.4131677053492267 e-02At fr, —2 + 9.3644396867936477 e-02At fr, 1
+ 3.3313595990211958 e-01At fr, + 2.1173977728759796 e-01Y4 + 1.9632543174653289 e-01 At Fy
Yo = 7.8814982890040256 e-04yy, —¢ + 3.4325376384250952 e-03y,, —5 + 3.2843942705524801 e-03yy,—4
+ 2.4335969039436908 e-02y,, —3 + 4.2838443864996689 e-02y,, —2 + 2.2529137459966309 e-01y, 1
+4.4470760557371170 e-01y, + 9.7632618142431179 e-05At fr,—6 + 3.1826539277724207 e-03At fr,—5
+ 3.0452951800182247 e-03At fr,—4 + 2.2564346150927735 e-02At fr, —3 + 3.9719867919393033 e-02At f1, 2
+ 1.8476893133231126 e-01At f,—1 + 4.1233354348266610 e-01At fr,

+ 2.5532152518431356 e-01Y5 + 2.3673449225324000 e-01 At F5,



A.4. Eight canonical HBgk; (%, 8, p) methods considered in the thesis 141

Y7 =9.1712252605348574 e-04yy,—¢ + 5.3106154915326864 e-04y,, —5 + 1.4484312100184759 e-03yy,—4
+ 2.3538759575491459 e-02y,, —3 + 2.3163417208184062 e-01yy, —1 + 3.6154680047434185 e-01yy,
+ 5.1703537307344551 e-04At f,_g + 4.9240104649720339 e-04At fr,—5 + 1.3429875402002991 e-03At fr,—4
+ 2.1825172367869829 e-02At fr,—3 + 1.5882145148623342 e-01 At fr, 1 + 3.3522672314560986 e-01 At fy,
+ 3.8038365258310114 e-01Y5 + 3.5269228002099440 e-01 At Fg,

Ys = 5.6492834785037982 e-04yy,—¢ + 2.0605118288583172 e-03y, —5 + 8.6879528615987963 e-03yy,—4
+ 7.3422737165952628 e-02y,, —2 + 9.3129218889008436 e-02yy, —1 + 3.9748106289317864 e-01yy,
+ 1.9105095868216996 e-03At fr, 5 + 8.0554826230414336 e-03At fr,—4 + 6.8077669480774303 e-02At fr,—2
+ 8.6349548208734403 e-02At fr,—1 + 3.6854502391197458 e-01 At fy, + 5.0902778233268466 e-03Y3
+4.7197130561683030 e-03AtF3 + 1.7389388365218951 e-02Y5 + 1.6123466371520123 e-02AtF5
+ 4.0217392182500655 e-01Y7 + 3.7289624958963929 e-01 At F7,

Yn+1 = 2.2576177061003726 e-04y,, ¢ + 6.7444921834467451 e-04yy 5 + 1.1735565895738690 e-03y, —4

+ 5.1736483759398724 e-03y,, —3 + 1.2365374169134628 e-02y,, —2 + 3.9657298353392281 e-02y,, —1
+ 3.9653506378660275 e-01y,, + 5.6884514696624723 e-05At fr,—6 + 6.2535030346603420 e-04At fr, —5
+ 1.0881233893721177 e-03At fr,—a + 4.7970143547073473 e-03At fr,—3 + 1.1465193047621908 e-02At fr,—2
+ 3.6770305139953899 e-02At fr, —1 + 1.5087275769598654 e-01 At fr, + 3.9805481703267479 e-03Y3
+ 3.6907700959079234 e-03AtF3 + 1.1860718640120570 e-01Yy + 1.0997275701688432 e-01 At Fy
+ 1.8458049359935838 e-01Y5 + 1.7114330411645667 e-01AtFg + 1.1986532649283420 e-01Y7

+ 1.1113930635329497 e-01 At F7 + 1.1716129307267698 e-01Yg + 1.0863212260411988 e-01 At Fy.

HB(7,8,12). c(HB(7,8,12)) = 0.80110266354476745, cor(HB(7,8,12)) = 0.100, and
o = [0,0.24542753056807640, 0.34247100086335447, 0.43468829444860235, 0.55682843622863765,
0.61757295256705613, 0.79533083970127050, 0.93847995276937568] T .

Yo = 5.2894477499746727 e-03y,,—¢ + 2.1033888944116286 e-02y,, 5 + 1.0405200285779162 e-01y, 3
+ 4.6594593839432506 e-02y,, —2 + 4.1064936993795986 e-01y,,—1 + 4.1238069667072497 e-01yx,
+ 6.0812233983290444 e-04At fr,—6 + 2.2556675934975120 e-02At fr,—5 + 1.2988597790621942 e-01At f1, —3
+ 5.8163074422014384 e-02At fr,—2 + 4.7234802415197297 e-01 At fr,—1 + 5.1476635322369069 e-01 At fr,
Y3 = 1.4740901019083411 e-05yy, —¢ + 6.7958735918013935 e-05y,, —5 + 2.2555349086398474 e-04y,, —3
+ 2.2555349086398474 e-04y,, 3 + 4.6433041313443876 e-04y, 2 + 8.2695038374036622 e-01yy,
+ 8.2695038374036622 e-01y,, + 7.5815159706814524 e-05At fr, —5 + 2.8155378970530151 e-04At fr, —3
+5.7961411722174706 e-04At fr, 2 4 8.6236170149706567 e-02At fr,
+ 1.7227703271869996 e-01Y>2 + 2.1504988131783029 e-01 At F3,
Y4 = 4.8260898815269079 e-04yy, —¢ + 4.3860019573741344 e-03yp —4 + 1.5449344199948227 e-02y,, 2
+ 1.3165148793506732 e-02y,, —1 + 7.8692734342040382 e-01yy, + 2.2363834772940651 e-04At fr,—6

+ 4.4349055649211249 e-03At fr,—4 + 1.9285099030364097 e-02At fr, —o + 1.6433784822598614 e-02At fr, 1
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Ys =

Ys =

Yn+1 =

+ 1.7313220206249497 e-01At fr, + 1.7958955264061419 e-01Y3 + 2.2417794973487604 e-01 At F3
6.2745706888749721 e-05yy ¢ + 3.8965049836753624 e-03y, —5 + 6.0323150991997317 e-03y,—4

+ 1.0940482673652451 e-02y,, 3 + 2.6856703628222976 e-02y,, 2 + 5.8187490878337481 e-02y,, —1

+ 6.7051537269623074 e-01y,, + 1.3450925858784642 e-03At fr,—5 + 7.5300150326641120 e-03At fr, 4

+ 1.3656779800534582 e-02At fr,—3 + 3.3524671493894008 e-02At fr, —2 + 7.2634249673899975 e-02At fr,
+ 2.4069082974226652 e-01At fr, + 2.2350838433379089 e-01Y4 + 2.7900092523072823 e-01 At Fy,
5.3488530364275257 e-03yy —¢ + 4.3155134278030057 e-03y, —5 + 2.4854662278709198 e-02y,, 4

+ 1.2925006051124819 e-02y,, 3 + 9.6157928560609049 e-02y,, —2 + 1.9305966285193615 e-01y, —1

+ 4.8777687074532394 e-01y,, + 2.0397556000102059 e-03At fr,—6 + 5.3869667699113759 e-03At fr,—5

+ 3.1025564399863342 e-02At fr,—4 + 1.6134019569893465 e-02At fr, —3 + 1.2003196710784730 e-01At fy,
+ 2.0287495934054137 e-01At fr,—1 + 5.0041213700781562 e-01AtL f;,

+ 1.7556150304806620 e-01Y5 + 2.1914981816591528 e-01 At F5,

2.5613108121858982 e-03yy —g + 1.5982290879185158 e-02y,, —5 + 7.2142987723427324 -02y,, 3

+ 3.9285071921962803 e-02y,, —2 + 2.4182328466779504 e-01yy, —1 + 3.2498587812919472 e-01yx,

+ 1.5040726354864437 e-02At fr,—5 + 9.0054609735292085 e-02At fr, —3 + 4.9038748352342044 e-02At fr,
+ 3.0186303912380291 e-01At fr, 1 + 4.0567319635560278 e-01AtL f;,

+ 3.0321917586624875e-01Ys + 3.7850226901574163 e-01 At Fp,

2.0735199012525212 e-04y, —6 + 5.0022035374880352 e-03y,, —5 + 1.5667340447800264 e-02y,, —4

+ 7.9801165393548930 e-03y,, —3 + 1.1063281213334106 e-01y,, —2 + 1.7450809743309664 e-01y, 1

+ 3.0027653932076498 e-01y, + 2.5883323019827541 e-04At fr,—6 + 1.9557219268842841 e-02At fr, 4
+9.9614155619494639 e-03At f1,—3 + 8.8630390452963226 e-02At f, —2 + 2.1783487357403455 e-01At fy,
+ 3.7482903625869290 e-01At f, + 2.8350515421833086 e-02Y3 + 3.5389366072490651 e-02AtF

+ 1.0158505836477495 e-01Y4 + 1.2680654176741249 e-01AtFy

+ 2.5578996481141669 e-01Y7 + 3.1929735906704115 e-01 At F7,

2.5128359766961306 e-05y,,—¢ + 1.7477652684814446 e-03y,,—5 + 2.8778138364805922 e-03yy,—4

+ 4.4169173225911251 e-03y, —3 + 1.3666656018618394 e-02y,, —2 + 2.2366835384318023 e-02y,, —1

+ 5.1023862948181853 e-01y,, + 5.7765647910606489 e-04At fr, —5 + 3.5923159008693379 e-03At fr, 4

+ 5.5135471689065456 e-03At f,—3 + 1.7059805990601567 e-02At fr, —2 + 2.7920061188350664 e-02At fy,
+ 1.6854818130239199 e-01At fr, + 8.4165792064117679 e-04Y> + 1.0506242944155972 e-03 At F

+ 2.7706659771574976 e-01Y5 + 3.4585654289272832 e-01AtF5 + 4.1206074567182407 e-02Y7

+ 5.1436696496365751 e-02At F7 + 1.2554592412435736 e-01Yg + 1.5671639833131271 e-01 At Fy.

-1

-2

-2

-1

-1
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