
CSEE&T ‘98 Copyright IEEE

1

A Survey of the Relevance of
Computer Science and Software Engineering Education

Timothy C. Lethbridge
School of Information Technology and Engineering (SITE)

150 Louis Pasteur, University of Ottawa, K1N 6N5, Canada
tcl@site.uottawa.ca

Abstract

We describe a study of 168 software professionals to determine how relevant their
education has been to their careers. Starting with a list of 57 topics, we asked the
participants to indicate how much they learned in university, how much they know now,
how useful the material has been and whether they would like to learn more. We conclude
from the results that certain software engineering topics should be given more emphasis,
while the emphasis on certain mathematics topics should be changed.

Copyright 1998 IEEE. Published in the Proceedings of CSEE&T'98, February 22-25,
1998 in Atlanta, Georgia. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE.
Contact:

Manager, Copyrights and Permissions
IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.

CSEE&T ‘98 Copyright IEEE

2

A Survey of the Relevance of
Computer Science and Software Engineering Education1

Timothy C. Lethbridge
School of Information Technology and Engineering (SITE)

150 Louis Pasteur, University of Ottawa, K1N 6N5, Canada
tcl@site.uottawa.ca

Abstract

We describe a study of 168 software professionals to determine how relevant their
education has been to their careers. Starting with a list of 57 topics, we asked the
participants to indicate how much they learned in university, how much they know now,
how useful the material has been and whether they would like to learn more. We conclude
from the results that certain software engineering topics should be given more emphasis,
while the emphasis on certain mathematics topics should be changed.

1. Introduction

During the summer and early fall of 1997 we conducted an international survey of
software developers, where we asked them a variety of questions about their education, and
how useful that education has been.

Two important objectives of this research were:
1. To understand those areas where practitioners feel they need more or better

education, and thus provide information to educational institutions and companies as they
plan curricula and training programs.

2. To provide data that will assist in the evaluation of existing and proposed curricula.

2. Survey methodology

In this section we outline how we conducted the survey. We first explain the questions
that were asked; we then discuss the sampling process and the validity of the survey.

2.1 The questions

At the beginning of the survey were a series of demographic questions that allowed us to
determine: 1) The educational background of the participants; 2) the cumulative number
of years (including co-op jobs) during which they have worked in the software industry; 3)
the type of software they work with, and 3) the job functions they perform.

The main body of the survey asked participants to answer questions about a total of 57
topics.

The topics were grouped into five general curriculum categories as follows: 9
mathematics topics; 31 software topics; 4 engineering topics (mostly computer hardware),

1 This work is supported by NSERC and sponsored by the Consortium for Software Engineering Research

(CSER).

CSEE&T ‘98 Copyright IEEE

3

and 13 miscellaneous topics including natural and social science, and business. Participants
were also given several blank areas to add unlisted topics that they thought to be important.

We obtained the list of topics in the following manner: We first scanned computer
science and software engineering curricula (including [1, 2, 3, 4,]), and created an initial list
of topics that are taught in most programs. We then divided some topics from this initial list
so we could obtain more detailed information. For example, instead of asking about the
general topic ‘software engineering’, we asked about specific subtopics such as
‘configuration and release management’, ‘software metrics’, etc. We modified the list to
make sure it covered most of the proposed IEEE/ACM software engineering body of
knowledge for software engineers [5]. Finally, we ran a pilot study that brought to light
several additional topics.

For each topic we asked the participants to answer four key questions (Figure 1). Each
of these was to be answered on a scale from 0 to 5. We were careful to ensure that each
value on the scale had a well-defined meaning, and that the high and low values were true
extremes.

i. How much did you learn about this at
University or College?

0=Learned nothing at all.
1=Became vaguely familiar
2=Learned the basics
3=Became functional (moderate working
knowledge)
4=Learned a lot
5=Learned in depth; became expert
(learned almost everything)

ii. What is your current knowledge about
this, considering what you have learned
on the job as well as forgotten?
0=Know nothing
1=Am vaguely familiar
2=Know the basics
3=Am functional; (moderate working
knowledge)
4=Know a lot
5=Know in depth/ am expert (know
almost everything)

iii. How useful has this specific material
been to you in your career?

0=Completely useless
1=Almost never useful
2=Occasionally useful
3=Moderately useful, but perhaps only in
certain activities
4=Very useful
5=Essential

iv. How useful would it be (or have been)
to learn more about this (e.g. additional
courses)?:
0=Pointless learning more
1=Very unlikely to be useful
2=Possibly helpful
3=Moderately helpful
4=Important to learn more
5=Critical to learn more

Figure 1: Scales for the four questions asked about each topic.

The first question sought information about how much each participant had learned in
university or college. The second question, using the same scale, asked how much the
person knows now. Presumably for some topics, participants would have learned more
since completing their education; whereas for other topics, they would have forgotten
material.

The third question asked how useful the topic has been in each participant’s career. We
expected to obtain strong agreement that certain topics are important or unimportant.

The final question asked how useful it would be for the participant to learn more about
the material. We expected this to tell us much the same information as question 3, but we
hypothesized that topics that are more currently needed would rate highly in this question.

CSEE&T ‘98 Copyright IEEE

4

The survey took the average participant 35 minutes to complete.

2.2 The sampling process

This section explains the physical format of the survey and how we distributed it.
There were two forms of the questionnaire: Paper-based (44 usable responses) and an

Internet-based html form (124 usable responses). We felt it was important to use both
means of distribution since some people do not have access to the Internet (e.g. due to
company policies). Also, paper forms may be more suitable for busy people who want to
complete the survey while, for example, commuting.

The survey was conducted from May to October 1997. We successfully sought the
participation of six companies to distribute the survey among their employees. In several
cases we received enthusiastic support for the survey from management, however we
approached several other companies without success.

We also publicized the availability of the survey electronically using Internet mailing lists
and newsgroups. We obtained 42 of the responses in this manner.

A cover letter was distributed with both versions of the survey. This made it clear that we
sought participants who worked in the software industry in any capacity from programmer
to manager. The letter also made it clear that details would be kept confidential.

We received six responses that we could not use because they were completed
incorrectly.

2.3 Validity

We attempted to obtain a sample that would represent the general software development
community. We were successful in obtaining responses from people who varied widely
according to such parameters as type of education, years of experience, and work function.

However, there are five areas where we believe there may be biases in our survey.
• Real-time and embedded software developers: Much of our support came from high-

technology software companies (especially in the telecommunications sector), but very little
came from the public sector or from companies whose business is not primarily software
development (but who nevertheless develop software for in-house use). This led to a bias
towards people whose primary work is real-time or embedded software.

• Postgraduate degrees: Support from high-tech companies also led, we believe, to a
bias towards people with postgraduate degrees. There were 55 responses from such people
(33%), which is clearly higher than their proportion of the general software profession.

• North America: 74% of participants work in Canada, 23% in the USA, and only 3% in
other countries. The survey should thus be considered primarily descriptive of the North
American experience. For seven respondents,, we were not able to determine where they
worked.

• Feelings vs. actual usefulness: Since our survey is seeking subjective opinions, there
may be systematic biases that result in some topics being under-rated or over-rated. For
example, respondents in general may dislike some subject and thus downplay its
usefulness. Alternatively, the topic might not have proved directly useful to the software
developer, but might have contributed to valuable problem-solving skills that the
participant does not recognize. We believe this type of bias will have minimal effect on the
overall rankings of the topics, since there were very significant differences between high-
ranked and low-ranked topics. We suggest follow-up studies that try to objectively measure
the use of particular subject matter by working software professionals.

CSEE&T ‘98 Copyright IEEE

5

• Self selection: We circulated many requests for people to complete the survey, and only
received responses from a small percentage. This was true within companies as well as in
the wider Internet distribution. People who completed the survey thus represent a special
sub-population whose members are likely to have more free time, or an intellectual interest
in this kind of data. To combat this bias, we were able to find several corporate executives
to champion the survey and thus give participants a sense that completing the survey is a
part of their work.

For the first two types of bias above, we had enough data to perform separate analyses of
sub-samples (e.g. developers of real-time software vs. developers who did not work with
real time software). In general, the results for such sub-samples did not differ significantly
from results from the sample as a whole.

3. Results

3.1 Basic demographics

Geography: Of 165 respondents who gave this information, 123 (75%) work in Canada,
37 (22%) in the USA and 5 (3%) in other countries.

122 (73% of 168 who answered) had received higher education in Canada, 34 (20%) in
the USA, 18 (11%) in Europe and 10 (6%) in other countries. Some had received
education in more than one region.

Type of education and experience: 12 of 167 (7%) had at most college (non-university)
education. For 100 (60%) their highest degree was a bachelors’ degree; for 45 (27%) it
was a masters degree, and 10 (6%) reported having a Ph.D.

Table 1 shows the field of study of the participants (from the 159 who reported this
information). Where a participant reported more than one field of study, the table reflects
only that field closest to computer science or software engineering (closest to the top of the
table).

Computer Science or Software Engineering2 80 50%
Computer Engineering or Electrical Engineering 47 30%
Other Engineering 7 4%
Other Science (including mathematics) 19 12%
Other subjects (typically business or arts) 6 4%

Table 1: Fields of study of participants in the survey.

The earliest degree had been received in 1962, the latest in 1997 (117 respondents gave
this information). On average it had been 11.5 years (standard deviation 7.6) since
participants completed their first degree, and 9.6 years since their last degree.

Participants reported that they had worked in the software industry between 0 and 40
years (n=165, mean=10.5, standard deviation=7.7). It is interesting to note from these
figures that the average time since receiving their latest degree is less than the average time
working in the industry: Many participants returned to university to update their education
at some point.

2 Few undergraduate software engineering programs have yet produced graduates, however some respondents

have a masters degree in software engineering, or have completed a software engineering option in a computer
science degree.

CSEE&T ‘98 Copyright IEEE

6

For the purposes of subsequent analysis, we divided subjects into junior, intermediate
and expert based on their years in the industry as shown in table 2.

Years of experience Category
0-4 Junior 46 28%
5-11 Intermediate 60 36%
≥12 Expert 59 36%

Table 2: Categorizations of participants based on numbers of years they have
worked in the software industry.

Type of work: Participants were asked to state which of three categories of software they
were involved with; results from the 149 who responded are in table 3. Thirty-seven
respondents reported that they worked with more than one category, and 10 respondents
listed software types outside these categories..

Real-time, telecommunications or embedded software 115 77%
Management information, in-house or Internet-based software 51 34%
Consumer or mass-market software 20 13%

Table 3: Type of software developed by participants. Multiple responses t o
this question were allowed.

Participants were also asked to describe their work. They were given several keywords, of
which they could chose several and/or add their own. From the 167 responses we were able
to divide participants into the categories described in table 4.

Developers Reported some programming, and/or
maintenance and/or general development
(and possibly other activities)

133 80%

Managers Reported management, (and possibly
other activities)

57 34%

Developer-Managers Developers ∩ Managers 37 22%
Pure Developers Developers minus Managers 96 57%
Pure Managers Reported management only 14 8%
Maintainers Reported some maintenance 76 46%
Analysts Analyzed requirements but did not do

development
6 4%

Pure Testers Nothing but testing 6 4%

Table 4: Intersecting categories of software workers identified in the survey.

3.2 General relevance of education

The survey asked two very general questions about the relevance of participants’
education. These were added following the pilot study. Several respondents to that study
told us that they had marked ‘almost never useful’ for many specific subjects, but that
overall their education had proved useful. The questions were:

• Considering your university or college education taken as a whole, how relevant has it
been to your career (0=Completely irrelevant; 3=Relevant at times; 5=Extremely relevant)?

CSEE&T ‘98 Copyright IEEE

7

• How important were specific subjects and details in your education, as opposed to
learning how to think or approach problems (0=The specific subjects I learned were much
more important; 2.5=Both were equally important; 5=learning how to think was much
more important)?

The mean responses were 3.5 to the first question and 3.7 to the second; however there
was a wide range with some people responding zero and others five.

For the first question, we can thus draw the conclusion that software practitioners
consider their education to be moderately relevant, but with big differences of opinion.

For the second question, we can conclude software developers feel that learning how to
think is somewhat more important than learning specific subjects. Maybe we should not
therefore be overly concerned with the minutiae of curriculum design, but instead ensure
that courses are stimulating and cover a wide variety of problems.

Differences among demographic sub-groups: We divided the participants based on
whether they had responded ≥4 or <4 to the above questions. This provided an
approximately even split for each question.

Fifty-one percent of respondents said they felt their education was relevant (response to
the first question was ≥4) while the rest were less sure about this. However, there were some
interesting differences depending on the demographics of the respondents to this question:

• Respondents educated in the US were significantly more likely to find their education
relevant (65% found it relevant). Only 49% of those educated in Canada and 48% of those
educated elsewhere found it relevant. One thus might conclude that one should look to US
universities for examples of effective programs. It seems however, that there is a hidden
bias towards the more élite universities in the sample: There were more respondents from
universities such as Stanford and MIT than in the general software developer population.

• As would be expected, those with computer science or software engineering education
were far more likely to report it relevant (70%). Interestingly, those with computer or
electrical engineering backgrounds found their education significantly less relevant to their
software careers (30%). Intuitively, one might expect this since their education contains
more hardware than software, however many companies preferentially hire these people for
software jobs, perhaps because they are engineers. This presents an argument in favor of
new software engineering programs.

• As one would suppose, those with non-computer backgrounds were far less likely
(29%) to find their education relevant.

• Junior respondents found their education less relevant (43%) than experts (56%).
Possible explanations are: 1) more senior people might have had the chance to work on a
wider variety of projects which, taken cumulatively, make use of a greater fraction of their
education, or 2) education might be becoming less relevant. We prefer the first explanation.

56% of respondents felt that learning how to think (≥4) was more important than
specific details. The following are some interesting demographic differences for this
question:

• Those educated outside North America were significantly less likely (44%) to consider
‘learning how to think’ to be of prime importance. This might reflect the tendency of
North American universities (especially in the USA) to require a wider diversity of subjects
(i.e. ‘liberal arts’ or ‘complementary studies’) in a students’ education.

• Those with postgraduate educations thought that learning how to think was more
important than the details (67%), as did those whose education was other than computer
science or computer engineering (74%). The latter seems reasonable, since clearly these
people would not have been able to learn many relevant (software) details in university.

CSEE&T ‘98 Copyright IEEE

8

• Those who develop real-time, telecommunications or embedded software put less value
on learning how to think (49%), while those who developed other types of software put
great value on it (78%). This might reflect the fact that developing consumer or business
software requires one to learn about topics that one is typically not taught in university,
whereas developing software that is tightly connected to the hardware draws heavily on the
technical curriculum.

• Experts put more value into learning how to think (56%) than junior respondents
(49%). One might attribute this to the fact that experts tend to work on more analytic
problems that require more original thought. This is borne out by another statistic: 33% of
junior respondents perform analysis as part of their work, whereas 76% of expert
respondents perform analysis.

There was a very low correlation coefficient (-0.2) between the education relevance
question and the question that asked about details vs. learning how to think. Those who
thought their education was relevant were significantly less likely (46%) to favor ‘learning
how to think’, than were people who thought their education was less relevant (65%).

i. How much did you learn? ii. What is your current knowledge?
Mathematics 2.7 (< functional) Mathematics 1.9 (basics)
Software 1.8 (basics) Software 2.7 (< functional)
Other Engineering 2.0 (basics) Other Engineering 1.8 (basics)
Other Topics 1.4 (< basics) Other Topics 2.0 (basics)

iii. How useful has this been? iv. How useful to learn more?
Mathematics 1.5 (< occasionally) Mathematics 1.5 (< possibly)
Software 2.8 (moderately) Software 2.9 (moderately)
Other Engineering 1.7 (< occasionally) Other Engineering 1.9 (possibly)
Other Topics 1.8 (occasionally) Other Topics 1.9 (possibly)

Table 5: Averages of the subtopic averages for the four major categories.

3.3 Comparison of the curriculum categories

Table 5 shows responses for each of the four main questions, and the four main
curriculum categories. The following are key observations from this data:

• Participants felt that their university education gave them a much better grounding in
mathematics than in software topics. One possible reason for this is that most of the math
useful to software developers is actually taught in the curriculum, whereas many software
engineering topics have not been taught until recently. See section 3.4 for more about this.

• As one would expect, software is the highest rated category in terms of usefulness, and
desire to learn more. The software figures in table 5 are relatively low because they include
several low-rated software subtopics (e.g. artificial intelligence).

Table 6 shows the differences between question i (what they learned) and question ii
(what they know now) for the categories. It is clear that much mathematics is being
forgotten, whereas much new software knowledge is being acquired on-the-job.

There are several significant differences among the demographic subgroups with respect
to the above data. The following is a selection of points illustrating such differences, most
of which confirm intuition:

CSEE&T ‘98 Copyright IEEE

9

Mathematics -0.8
Software 0.9
Other Engineering -0.1
Other Topics 0.6

Table 6: Question ii minus question i: How much has been learned or
forgotten?

• Those with postgraduate degrees learned more mathematics than others (2.9 vs. 2.6),
and found it more useful in their careers (1.8 vs. 1.3).

• Expert participants believed that their software education had been significantly more
useful to them than junior participants (2.9 vs. 2.6), even though their perceived
differences in current knowledge were quite close (2.6 vs. 2.5). Expert participants felt they
had learned less in university about software (1.6 vs. 2.0). For other subjects junior and
expert participants gave very similar responses.

• Managers in general reported learning more about topics and finding them more
useful than non managers. In particular, managers had a wider knowledge and appreciation
of the miscellaneous topics (including management): for question ii the means were 1.8 for
non managers and 2.3 for managers, whereas for question iii the means for miscellaneous
topics were 1.5 and 2.2 respectively.

• Those who exclusively develop mass-market, consumer or management information
software reported far less knowledge about hardware, as compared with those who develop
real-time, embedded or telecommunications software (1.3 vs. 1.9). The former group also
found their hardware knowledge less useful (1.1 vs. 1.9). Interestingly, the former group is
less likely to forget their mathematics knowledge (-0.5 vs. -0.9), although part of this can
be attributed to the fact that they had less mathematical education to start with (2.3 vs. 2.8).

3.4 Details within the categories

Tables 7 through 10 show the subtopics perceived to be most and least useful within
each category. Question iii is considered the best indicator of usefulness, followed by
question iv. The columns marked ‘learn’ are the difference between questions i and ii. A
strong positive value indicates that material is being learned on-the-job, and hence is
apparently also useful; universities might therefore consider teaching these subjects in
order to better prepare students.

Boldface in the tables highlight values that are near the extremes for the question.
Just because a topic ranks low in these tables does not imply that it should not be taught

– for example, most educators believe the low-rated calculus is needed for a proper
understanding of aspects of the higher-rated statistics. Also, this survey results reflect only
opinions which may not reflect usefulness in practice. However, universities might consider
increasing the emphasis on high-rated topics as opposed to low-rated topics, and reducing
the level of detail or method of teaching of low-rated topics.

The following conclusions can be drawn from the data presented in tables 7 though 10:
• For the purposes of educating software professionals, there appears to be an imbalance

in the emphasis on mathematics subtopics taught in most computer science and software
engineering curricula. Calculus is usually given heavier weight than the topics listed as
‘most useful’ in table 7.

CSEE&T ‘98 Copyright IEEE

10

Most useful Math iii iv Learn Least Useful Math iii iv Learn
Probability & statistics 2.2 1.9 -0.8 Computational Geom. 0.9 1.2 -0.4
Predicate logic 1.9 1.6 -0.4 Differential Equations 0.9 0.9 -1.3
Set theory 1.8 1.5 -0.8 Calculus 1.1 1.0 -1.4
Information theory 1.9 1.9 -0.2

Table 7: The most useful (top left) and least useful (top right) out of 9
mathematics subtopics.

Most useful Software iii iv Learn Least Useful Software iii iv Learn
General architecture & 4.3 3.9 1.0 Artificial intelligence 1.0 1.5 -0.1
design Pattern recognition 1.0 1.4 0.2
Data structures 4.1 3.2 0.5 Graphics 1.5 1.7 0.4
Testing & quality 3.7 3.8 2.1 Numerical methods 1.8 1.9 -0.7
assurance Simulation 2.1 2.3 0.2
Requirements gathering 3.7 3.8 1.6
and analysis
Operating systems 3.5 3.4 0.6
Project management 3.5 3.7 1.9
Data transmission 3.5 3.7 1.1
Real-time software 3.4 3.5 1.5
Object oriented analysis 3.3 3.8 1.2
and design
Configuration mgmt. 3.3 3.2 2.4
File and information 3.2 2.8 0.6
management
User interface design 3.2 3.4 1.7
Maintenance 3.2 3.1 2.0

T able 8: The most and least useful out of 31 software subtopics.

Most useful Other
Engineering

iii iv Learn Least Useful Other
Engineering

iii iv Learn

Computer architecture 2.9 2.8 0.2 Robotics 0.6 1.0 0.0
Analog electronics 1.3 1.4 -0.5

T able 9: The most and least useful out of 4 hardware subtopics.

Most useful Other iii iv Learn Least Useful Other iii iv Learn
Technical writing 3.6 3.5 1.6 Chemistry 0.6 0.7 -0.8
Ethics / professionalism 3.0 3.0 1.6 History 0.9 1.1 0.7
Management 2.8 3.2 1.6
Second language 2.1 2.6 0.8

T able 10: The most and least useful out of 13 miscellaneous subtopics.

• It would appear from table 7 that certain topics which are either electives or a minor
component of the curriculum ought to be emphasized far more. Such topics include testing

CSEE&T ‘98 Copyright IEEE

11

and quality assurance, requirements gathering and analysis, project management, user
interface design and configuration management.

• Conversely the data provides evidence that it would be reasonable to drop certain topics
which are compulsory in many programs, but over which there is some disagreement about
whether they should be included. Such subjects include chemistry, differential equations
and numerical methods.

• Software practitioners are extremely eager to learn more about software architecture
and design: They feel their education did not provide enough of this material. Both
universities and corporate training departments ought to consider providing further courses
in this topic.

4 General conclusions

The data presented in this paper lead us to believe that there is considerable room for
improvement in what is taught to software students. Although the data we have presented
represent opinions, there is considerable consistency among various sub-samples; this
suggests that the same opinions are widely held. Also, the opinions are those of software
developers with experience applying the material they have learned in university, not just
students who have recently finished courses.

We have used the results of this study to help design and validate our own new software
engineering program [6] at the University of Ottawa3, the first such program in Canada.
The following are some important features of the program that have been influenced by
the results of this survey:

• All but one of the topics identified as most important in tables 7 through 10 will be
taught as required topics in the software engineering program. The only exception is the
second language. Of these ‘important’ topics, the following are not normally compulsory
in typical computer science programs: Project management, real-time systems, user
interface design, maintenance (includes reengineering), management, and ethics and
professionalism.

• We have explicitly made certain topics optional that were found not to be important
according to the survey; in particular numerical methods and differential equations. Certain
other topics that were found to be of low importance (e.g. chemistry and calculus) have
been retained for various reasons including conforming to standard engineering
curriculum guidelines, as required for accreditation.

We hope that the data reported here will be useful to others designing university
curricula or corporate training programs. Further data from this survey, along with
additional recommendations for curriculum change, can be found in [8].

Acknowledgments

We would like to thank all those who completed questionnaires. We would also like to
thank Anatol Kark of the National Research Council of Canada who prepared the
electronic version of the survey, Maryam Banaei who helped circulate the questionnaires in
one particular company, K. Teresa Khidir who helped organize distribution, performed the
data entry and provided useful comments, and Nicolas Anquetil who also gave valuable
criticism.

3 Our new program replaces the option that was reported in last years’ proceedings [7].

CSEE&T ‘98 Copyright IEEE

12

References

1 . G. Ford, (1996) “The SEI Undergraduate Curriculum in Software Engineering”, Software Engineering
Institute.

2 . D. Parnas (1997) “Draft: Software Systems Engineering”, McMaster University.
3 . J. Fernando Naveda (1997) “Crafting a Baccalaureate Program in Software Engineering”, 10th SEI

Conference on Software Engineering Education, Virginia Beach, pp. 74-79.
4 . List of Undergraduate Software Engineering Programs at http://ricis.cl.uh.edu/virt-lib/se_programs.html
5 . Joint IEEE Computer Society and ACM Steering Committee for the Establishment of Software Engineering

as a Profession; at http://computer.org/tab/seprof/
6. T. Lethbridge, B. Probert, D. Ionescu, D. Gibbons, J. Raymond, L. Orozco-Barbosa, S. Szpakowicz,

(1997)“Proposal for a Software Engineering Program”, School of Information Technology and
Engineering, University of Ottawa.

7 . T. Lethbridge, D. Ionescu, A. Mili and D. Gibbons, (1997) “An Undergraduate Option in Software
Engineering: Analysis and Rationale”, 10th SEI Conference on Software Engineering Education, Virginia
Beach.

8. Lethbridge, T. (1997), “The Relevance of Software Education: A Survey and Some Recommendations”,
submitted to Annals of Software Engineering, November, 1997.

