
Examination Timetables and Tabu Search with
Longer-Term Memory

George M. White and Bill S. Xie

School of Information Technology and Engineering,
University of Ottawa,

Ottawa, K1N 6N5, Canada
white@site.uottawa.ca

Abstract. The examination scheduling problem has been examined and
a four-phase system using a tabu search algorithm, OTTABU, has been
implemented. This system uses both recency-based short-term memory
and move (or frequency)-based longer-term memory to improve the qual-
ity of the solutions found. The system was tested using real data obtained
from the University of Ottawa registrar’s office and real examination
schedules were produced. It was found that the use of longer-term mem-
ory produced better schedules that those produced without such memory
– typically a 34% improvement was obtained due to this factor alone. The
length of the long term memory list was also found to be important. A
length that is too small can greatly reduce its effectiveness. A list that
is too long only reduces the effectiveness by a small amount. A quanti-
tative analysis method is applied to estimate the appropriate length of
the longer-term tabu list and a controlled tabu relaxation technique is
used to improve the effectiveness.

1 Introduction

The examination timetabling problem is a difficult combinatorial exercise that
has been studied for many years, dating back to at least the early 1960s [1]. This
work has led to several implementations that have been used with much success
at universities [2], [3].

A review of most of the work published in this area can be found in the
comprehensive coverage of Carter and Laporte [4].

Much of the early work was based on bin packing algorithms with heuristic
rearrangement of the schedule based on some version of the travelling salesman’s
algorithm to reduce the number of consecutive examinations taken by students.
More recent work is based on the observation that the examination timetabling
problem is an assignment-type problem and can be considered to be a graph
colouring problem. Some researchers have applied tabu search (TS) techniques
to solving examination timetabling problems in recent years. Hertz and de Werra
[5] used a tabu search algorithm to generate solutions for the problem modelled
as a graph colouring problem with great success. After this initial approach,
Hertz [6] applied the approach developed for graph colouring to construct and

E. Burke and W. Erben (Eds.): PATAT 2000, LNCS 2079, pp. 85–103, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

86 G.M. White and B.S. Xie

solve course timetabling and examination timetabling problems. Boufflet et al.
[7] modified this method to solve a particular practical examination timetabling
problem. They found that their TS techniques improved the solutions well.

In these works only recency-based short-term tabu techniques were used. The
move (exam, original period) is stored instead of the solution into the tabu list
in order to save space and time, and the tabu tenure is set to a fixed value 7.
Boufflet et al. also set nbmax, the maximum number of null iterations, to 200 but
Hertz did not indicate which value he used. Hertz generated the neighbourhood
of a current solution s only from the exams which create at least one conflict in s,
but Boufflet et al. considered all the feasible moves of exams from one feasible
set to another one.

In this paper, we describe an automated TS approach such that a frequency-
based longer-term memory mechanism combined with tabu relaxation technique
is used to optimize an examination timetable problem. The tabu relaxation tech-
nique can accelerate downhill movement and diversify the search space. We also
introduce a quantitative analysis method which investigates the examination
distribution and estimates the size of the lightest or the most active exams and
the size of the heaviest or the most inactive exams in the examination set, and
makes it possible to choose automatically the appropriate parameters for TS for
an individual examination timetabling problem.

Section 2 describes the examination timetabling problem formulated as a
graph colouring problem. The following sections describe the ideas behind TS
and show how a specific implementation of a TS algorithm can be used to cast
timetables with certain desirable qualities. Data taken from the Fall 1996 regis-
tration data at the University of Ottawa were used to test the system using real
data. Some comparisons with results obtained from other researchers conclude
this paper.

2 Graph Colouring and Examination Timetabling Models

The examination timetabling problem is an assignment-type problem and can
also be considered to be a graph colouring problem. The assignment-type prob-
lem can be described as follows [8]:

Given n items (exams) and m resources (timeslots), determine an
assignment of each item to a resource in order to optimize an objective
function and satisfy s additional side constraints (classified as hard and
soft constraints).

We use an undirected graph G = G(V,E) to describe the examinations and
their relationships. Let V be the examination (or node) set, v be the number
of examinations, vi be the ith examination and si be the number of students
taking exam vi. If there are m students who must take both exam vi and vj , we
consider there is an edge eij with a weight m between the node vi and vj . Let
E be the edge set in the graph, e the total number of edges in the graph and w
the sum of the weights of edges in E.

Examination Timetables and Tabu Search with Longer-Term Memory 87

Let T be a given set of consecutive timeslots, each one containing zero or
more exams: i.e. T = (T1, T2, . . . , Tk), where k is the number of timeslots. Ci

is the maximum number of seats available for Ti. Each exam in the graph is
assigned into a timeslot Ti. For a timetable to be feasible, the sum of weights
of edges having both endpoints in the same timeslot must be zero. In addition,
the sum of weights of edges between the timeslots with a given distance (i.e. of
adjacent timeslots) should be minimized. Such a timetable is called optimal. We
must, of course, ensure that no timeslot requires more examination seats than
are available.

Let Ei,0 be the set of edges having both endpoints in Ti (i = 1, 2, . . . , k),
Ei,1 be the set of edges between Ti and Ti+1 (i = 1, 2, . . . , k − 1) and Ei,2 be
the set of edges between Ti and Ti+2 (i = 1, 2, . . . , k − 2). Let W0 be the sum
of weights of edge set E0 = ∪Ei,0 (i = 1, 2, . . . , k). W1 is the sum of weights
of edge set E1 = ∪Ei,1 (i = 1, 2, . . . , k − 1). W2 is the sum of weights of the
set E2 = ∪Ei,2 (i = 1, 2, . . . , k − 2). We define the objective function f(s) for
solution s as

f(s) = p0 × W0 + p1 × W1 + p2 × W2

where s is subject to the condition that for all Ti, the sum of the enrolments ≤ Ci

(the maximum number of seats available for Ti). p0, p1 and p2 are the penalties
chosen to weight the different conflict classes in s that are characterized by
W0,W1 and W2 respectively. For this problem we set p0 � p1 � p2 = 1.

Hence, the problem of optimal examination scheduling is equivalent to min-
imizing the value of the objective function f(s) of a solution set S.

3 Concepts of Tabu Search

The TS optimization schemes are derived from ideas proposed at various times
in the 1960s by Fred Glover, and subsequently developed by him and by other
researchers [9], [10]. As defined in [10],

Tabu search is a meta-heuristic that guides a local heuristic search
procedure to explore the solution space beyond local optimality. . . . The
local procedure is a search that uses an operation called move to define
the neighbourhood of any given solution.

A meta-heuristic refers to a master strategy that guides and modifies
other heuristics to produce solutions beyond those that are normally
generated in a quest for local optimality. The heuristics guided by such
a meta-strategy may be high level procedures or may embody nothing
more than a description of available moves for transforming one solution
into another, together with an associated evaluation rule.

The local search strategies are often memoryless ones that keep no record of their
past moves or solutions. The TS meta-heuristic makes abundant use of memory
in two ways. Different adaptive memory structures are often incorporated that
remember some of the recent moves made by the algorithm and may record some

88 G.M. White and B.S. Xie

of the more recent or more promising solutions found. This memory of the search
history is used to incorporate a responsive exploration of the state space helping
the search to find superior solutions faster.

Glover and Laguna [10] emphasize four important dimensions of the memory
structures used in TS. These are

– recency : The TS memory keeps track of the solution attributes that have
changed in the recent past. These attributes are parts of the solution that
change in moving from one solution to another.

– frequency : TS calculates ratios that keep track of which attributes change
the most and how often they move.

– quality : In principle, TS can distinguish a better solution from a worse one
by using criteria other than a single objective function, i.e. TS can directly
incorporate multiple-criteria decision capability.

– influence: TS uses the information it has in its memory to evaluate the
choices it will make and the quality of the solutions it finds.

The strategies used by TS can be classified as using intensification and/or
diversification [10]. The strategy of intensification is implemented by modifying
the choice rules used to select moves in order to aid the location of solutions
that have been found to be good in previous search areas. The basic idea here
is that if certain regions have yielded good solutions in the past, they may well
yield even better solutions in the future.

When diversification is used, the exact opposite behaviour is encouraged. This
drives the search area into those regions that have not yet been well explored.
Perhaps better solutions can be found there, as that area has not yet been well
examined.

4 The OTTABU Algorithm

We have implemented a TS algorithm OTTABU and have used it in an attempt
to provide a practical examination timetable using data provided by the Uni-
versity of Ottawa. The data were generated in the Fall of 1996 and are based on
the course enrolments of that time. This section outlines the strategies used in
developing the algorithm. Details are given in Section 6.

4.1 Initial Solution

An algorithm derived from a bin packing algorithm (largest enrolment first) is
used to generate an initial solution. The main idea for this algorithm is presented
in the next paragraph. Note that this initial solution may be either feasible or
infeasible.

Let G be a set of examinations and T a set of timeslots. G consists of v
exams with enrolments s1, s2, . . . , sv and T consists of t timeslots with seating
capacities C1, C2, . . . , Ct. We assign the exam with the largest enrolment from G,
denoted as A, into the first timeslot T1. Then we construct a set of examinations

Examination Timetables and Tabu Search with Longer-Term Memory 89

GA (a subset of G) whose members have no conflicts with the exam A, and try
to schedule the largest exam in GA into T1. If T1 does not have the capacity to
accept it, try the second largest one. . . . Repeat this procedure until T1 is full or
no exam without conflict with exams assigned in T1 is available. This procedure
can guarantee timeslot T1 to be conflict free. Apply the same algorithm to the
unassigned exams for T2, T3, . . . , Tt. If one or more of the timeslots is empty and
all exams are assigned, we have a feasible timetable. If all t timeslots are used up
and there are still some exams to be assigned, we assign them into these non-full
timeslots regardless of the conflicts generated.

4.2 Atomic Move, Neighbourhood, and Local Search

Let a solution s = (T1, T2, . . . , Tt), where Ti is the set of exams assigned to
timeslot Ti and t is the number of timeslots. We generate a new solution s′

from a solution s by an atomic move. An atomic move is one such that exactly
one node x in s is moved from a timeslot Ti to another timeslot Tj , denoted as
(x, i, j). We call s′ a neighbour of s and all the neighbours generated from s by an
atomic move as the neighbourhood of s. The size of the neighbourhood depends
on the size of candidate node lists and the number of timeslots. There are two
useful types of candidate node lists: those composed of all nodes in the graph
and those containing only those nodes related to the conflicts concerned [7].
These are used to generate the neighbours of the current solution. Obviously,
the former is V , and the latter is the set of nodes, denoted by V ∗, which contains
the end-nodes of edges in E0, E1 and E2.

Starting from an initial solution, the TS algorithm iteratively explores a
subset N∗(s) of the neighbourhood N(s) of the current solution s. The member
of N∗(s) that gives the minimum value of the objective function becomes the
new current solution independently of the whether its value is better or worse
than the value corresponding to s (i.e. an uphill move is acceptable). If N(s) is
not too large, it is possible and convenient to take N∗(s) = N(s).

4.3 Recency-Based Short-Term Memory

Whenever a node x is moved from timeslot Ti to Tj , a move denoted by (x, i, j),
to get a new current solution s∗, (x, i) becomes tabu and is put into a tabu list
TS with a given tenure (so-called short-term memory). The tenure of each entry
already in the tabu list is decreased by 1 and those entries with zero tenure are
dropped from the tabu list. We choose 9 as the maximum tenure for TS. If a
move (x, i, j) creates the best solution so far, we will accept this move regardless
of its tabu status in TS, and if (x, j) is in TS, (x, j) will be dropped from TS. We
have found that if both long-term and short-term memory are used, the tenure
of the short-term tabu list is not critical.

4.4 Transitional Frequency-Based Longer-Term Memory

In order to investigate the effect of a frequency-based long-term memory, we have
incorporated a move frequency table (MFT) to store the move frequency of each

90 G.M. White and B.S. Xie

node in the graph. When a node is moved, its move frequency is incremented
by 1. We use a second, longer-term tabu list TL to dynamically forbid moving
over-active nodes in order to get diversification and help to prevent cycling. If
a node x has been moved more than two times and TL is not full, it will be
put into TL. If it is full and if some node y already in TL has a lower move
frequency than x, we drop y from TL and add x into TL. Hence, a node in TL
will not be dropped unless TL is full and a new node with higher move frequency
is added. If a node is in TL and if we move this node to get a better solution
than the latest best solution, we will accept this move but will not drop this
node from TL.

In order to choose an appropriate parameter for the length of TL, we need
to analyse the properties of the examination set to estimate the size of the
lightest and the heaviest exams in the graph. We call a node (exam) with lower
enrolment, degree or weight a light node (exam). Similarly, a node (exam) with
higher enrolment, degree or weight is a heavy node (exam).

From the point of view of local search (move), the lightest exams usually
are the most active, and the heaviest are the most inactive and most influential
if moved. In the process of search, the light nodes can act as “crack fillers”
[10] to perform a fine-tuning function. This, of course, helps the generation of
more optimal solutions. But, if there are too many light nodes in the graph,
there will be a high likelihood that the light exams may repeatedly move from
one timeslot to another timeslot. The values of the objective function of the
solutions examined will then change by only small amounts or have no change
at all. This increases the likelihood of cycling in the TS. The cycling may waste
time and iterations, lure the search away from the optimal region, and cause the
search to stop prematurely.

Hence, estimating the number of the potentially active nodes will help us to
decide what is the appropriate length for TL, denoted as lTL.

4.5 Tabu Relaxation

Another strategy used is the relaxation of tabu lists. If a given number of itera-
tions (this number should be less than nbmax) has elapsed and TL is full since
the last best solution was found, or if the current solution is much worse than
the last best solution, we empty all entries in both TS and TL. Relaxation of
the tabu lists will change the neighbourhood of the current solution dramati-
cally, which may drive the search into a new region and increase the likelihood
of finding a better solution.

In our algorithm, the maximum number of null iterations nbmax is set at
3× lTL. If the search has passed 2× lTL iterations since the latest best solution
was found and TL is full, or if the value of the current solution is better than the
value of the latest best solution by a predefined threshold r, the entries in TS and
TL will be dropped automatically. That is, if (f(s)−f(best))/f(best) > r, where
f(s) is the value of objective function of the current solution s and f(best) is the
value of objective function of the latest best solution, both lists are emptied.

Examination Timetables and Tabu Search with Longer-Term Memory 91

Experiments show that the threshold r should be set between 5% to 15%. It
is suggested that at the early stage of the search, r should be set to the high
end and gradually decreased as better and better solutions are uncovered. This
is because it is found that a threshold r that is too high may lead to too much
uphill movement such that the search may not be able to go downhill to the best
solution after relaxation of tabu lists

It is found that if the number of iterations has passed from lTL to 2 × lTL

and TL is full, the relaxation will lead to a dramatic downhill movement, which
may in turn lead to new regions or search spaces.

4.6 Intensification

For a large-scale examination timetable, the neighbourhood N(s) of the current
solution s generated with nodes in V has a much larger size than the neigh-
bourhood N∗(s) generated with the nodes in V ∗. We also noticed that the V ∗

becomes smaller and smaller while the solution is getting better and better.
Hence, we use a strategy such that a smaller nbmax is chosen for the search
over V and a larger nbmax chosen for the search over V ∗. It is shown that the
four-pass search strategy presented below can generate better solutions and save
search time.

Pass 1: We start the TS from a given initial solution. We generate neighbours
of current solution s with the nodes in V ∗ and set a bigger value for nbmax to
allow the search to do more downhill–uphill movements which may increase the
likelihood that more optimal solutions may be found, We store the best solution
and the last solution. The last solution may be as good as, or worse than, the
best solution.

Pass 2: We use the last solution obtained in pass 1 as the initial solution to
start a new search round with smaller lTL and nbmax (compared with the size of
V). The best solution obtained in pass 1 is saved as the default best solution. We
erase both the short-term memory and longer-term memory before starting the
search. The neighbourhood of the current solution is generated from V . We have
found that this will change the search behaviour and solution space dramatically
and not take much more time because the nbmax is small.

Pass 3: We repeat pass 1 with the last solution and the best solution obtained
in pass 2.

Pass 4: We repeat pass 2 with the last solution and the best solution obtained
in pass 3. The best solution obtained in this pass is the final solution.

Obviously, this strategy is an intensification strategy in which each pass ex-
cept Pass 1 intensifies the search in the region containing the best solution ob-
tained in the previous pass. We found that this strategy works well.

5 Quantitative Analysis of Examination Graph

In order to choose an appropriate parameter for the length of TL, we need to
analyse the graph of the examination set. We define the degree di of a node vi

92 G.M. White and B.S. Xie

to be the number of edges connected with vi directly, and the sum of weights of
these edges wi to be the weight of the node.

We calculate:

– the total number of edges, e =
∑

di/2 (i = 1, 2, . . . , v)
– the total enrolment, s =

∑
si (i = 1, 2, . . . , v)

– the total weights of graph, w =
∑

wi/2 (i = 1, 2, . . . , v)
– the density of matrix, dom = 2e/v(v − 1)
– the average enrolment per exam, ē = s/v
– the average degree per exam, d̄ = 2e/v
– the average weight per exam, w̄ = 2w/v.

Experiments have shown that the nodes (exams) with lower enrolment, de-
gree or weight have higher probability to be the most active nodes. This, of
course, not only helps the generation of more optimal solutions but also in-
creases the probability of cycling in the TS. Hence, estimating the number of
the potentially active nodes may help to decide what is the appropriate length
for the longer-term tabu list TL.

If the nodes (v1, v2, . . . , vv) are sorted according to the number of students
enrolled, by the degree of node, and by weight of node, we can create three
ordered sets:

s′ = (s′
1, s

′
2, . . . , s

′
v) where s′

i ≤ s′
j for any i < j,

d′ = (d′
1, d

′
2, . . . , d

′
v) where d′

i ≤ d′
j for any i < j,

w′ = (w′
1, w

′
2, . . . , w

′
v) where w′

i ≤ w′
j for any i < j.

Based on s′, d′ and w′, we estimate how many light and heavy nodes there are
in the graph by two methods. The first method is called mean points estimation
and the second method is called accumulation percentage estimation.

5.1 Method 1: Mean Points Estimation

For a series z = z1, z2, . . . , zm, sorted in ascending order, we calculate the mean
value of z, z̄ =

∑
zi/m. If the kth element zk is the largest element lez̄ then

there are k elements with a value less than or equal to z̄. We calculate five points
z̄/3, z̄/2, z̄, 2z̄ and 3z̄, and find the corresponding k. We apply this procedure
to series s′, d′ and w′ to get Table 1.

The numbers in the table are the number of nodes with values (enrolment,
edge, weight) less than or equal to the corresponding mean points. For example,
the value 311 means that there are 311 exams for which the enrolment is less
than 1/2 the average enrolment. We define nm to be the average of the number
of exams below the mean point of the three series s′, d′ and w′. Thus, the entry
300 = (311 + 253 + 336)/3. The number of nodes in the graph v = 771.

From this table, we estimate there are about 194 light exams (below the
mean point z̄/3) and 32 heavy exams (above the mean point 3z̄).

Examination Timetables and Tabu Search with Longer-Term Memory 93

Table 1. Mean Points (data: University of Ottawa, 1996)

Mean point s′ d′ w′ nm nm/v

min 1 10 10 7
z̄/3 211 143 229 194 0.25
z̄/2 311 253 336 300 0.38
z̄ 533 488 533 518
2z̄ 681 687 680 683
3z̄ 734 753 731 739
max 771 771 771 771

5.2 Method 2: Accumulation Percentages Estimation

From s′, d′ and w′, we calculate ss, dd and ww respectively to get three new
series:

ss = s′
1, s

′
1 + s′

2, s
′
1 + s′

2 + s′
3, . . . ,

∑
s′

i (i = 1, 2, . . . , v)

i.e. ss = (ss1, ss2, . . . , ssv) where ssj =
∑

s′
i (i = 1, 2, . . . , j), for j = 1, 2, . . . , v,

which indicates the accumulative enrolments of the j lightest exams ranked by
their enrolment;

dd = d′
1, d

′
1 + d′

2, d
′
1 + d′

2 + d′
3, . . . ,

∑
d′

i (i = 1, 2, . . . , v)

i.e. dd = (dd1, dd2, . . . , ddv) where ddj =
∑

d′
i (i = 1, 2, . . . , j), for j = 1, 2, . . . , v

which indicates the accumulative degrees of the j lightest exams ranked accord-
ing to their degree;

ww = w′
1, w

′
1 + w′

2, w
′
1 + w′

2 + w′
3, . . . ,

∑
w′

i (i = 1, 2, . . . , v)

i.e. ww = (ww1, ww2, . . . , wwv) where wwj =
∑

w′
i (i = 1, 2, . . . , j), for

j = 1, 2, . . . , v, which indicates the accumulative weights of the j lightest ex-
ams ranked according to their weight.

Obviously, we have s = ssv (the total enrolment), e = ddv/2 (the number
of edges), and w = wwv/2. ssi/ssv is the ratio of the accumulative enrolment
of the i lightest nodes to the total enrolment. For the same reason, ddi/ddv (or
wwi/wwv) are respectively the ratio of the accumulative degrees (or weights) of
the i lightest nodes to 2e (or 2w). We choose the percentages 5%, 10%, 15%,
50%, 85%, 90% and 95% and find the corresponding numbers k in the series
s′, d′ and w′.

We define np to be the average of the number of exams below the percentages
of the three series.

Note that 196/766 or 25% of the total nodes in the graph have only 5% of
the total enrolment, degree, and weights. It is not difficult to conclude that the
lowest 25% of the nodes (196 nodes) in the graph have a greater likelihood to
be moved in the process of local search.

94 G.M. White and B.S. Xie

Table 2. Accumulation percentages (data: University of Ottawa, 1996)

Percentage s′ d′ w′ np np/v

5% 199 171 218 196 0.25
10% 299 258 316 291 0.38
15% 372 321 388 360 0.47
50% 648 597 653 631
85% 757 738 757 751
90% 763 752 763 759
95% 768 763 768 766

5.3 Estimating the Length of the Longer-Term Tabu List

We use the data calculated above to estimate the number of the lightest nodes
in the graph. In general, the nodes located in the area A = (0, z̄/3)∪ (0, 5%) are
the most active nodes. The length of the long-term tabu list lTL can be set to
the number of elements in area A: for instance, the largest one among np or nm.

If A is too small for some individual application, we can choose area B =
(0, z̄/2) ∪ (0, 5%) or something similar.

6 Details of the OTTABU Algorithm

Procedures

/ ∗ Initialization ∗ /
set np by analysing the examination setG with accumulation percentage method;
s := BinPackingWithLargestEnrolmentFirst(G);
set p0, p1, and p2;
lTS := 9; nbiter := 0; bestiter := 0; optiter := 0; bestsol := s;
fmin := 0; NeighbourType := V ∗;

/ ∗ A Four Pass Tabu Search ∗ /
t := 0;
while t < 4 do {

ExamTimeTableTabuSearch();
if NeighbourType = V ∗ then NeighbourType := V
else NeighbourType := V ∗;
t := t + 1;
} endwhile;

return;

/ ∗ ExamTimeTableTabuSearch ∗ /
MFT := ∅; TS := ∅ ; TL := ∅; nv := np; nbmax := 0;
while f(bestsol) > fmin and (nbiter − bestiter) < nbmax do {

nbiter := nbiter + 1; optiter := optiter + 1;

Examination Timetables and Tabu Search with Longer-Term Memory 95

if NeighbourType = V ∗ then VC := V ∗ else VC := V ;
if |VC| ≤ nv then nv := 2|VC|/3;
if NeighbourType = V ∗ then { lTL := nv; nbmax := 3lTL; }

else { lTL := nv/3; nbmax := 3lTL/2 ;}
For any x ≤ V C, generate NS(s) := {si|si := s ⊕ mi} from all atomic
moves mi := (x, Ti, Tj), where either ((x, j) not in TS) ∧ (x not in TL)) or
f(si) < f(bestsol);
Choose a solution s∗ ∈ NS(s) with minimum f over NS(s) and if more
than one solution is minimal, choose one with lowest move frequency;
s := s∗;
update MFT(x); update TS(x, i, j); update TL(x);
if f(s) < f(bestsol) then { bestsol = s; bestiter := nbiter; optiter := 0}

elseif optiter > 2lTL or (f(s) − f(bestsol))/f(bestsol) > r
then { optiter := 0; TS := ∅ ; TL := ∅;}

} endwhile;
return;

Notes

If, in some iteration, we get a new current solution s∗ = s ⊕ (x, Ti, Tj), then we
do

1. Update TS(x, i, j): All tenures are decreased by 1. Drop the entries whose
tenures are 0, and add (x, i). If s∗ is the best solution so far, drop (x, j) if it
exists;

2. Update TL(x): add (x) into TL if TL is not full and MFT (x) ≥ 2, or replace
(y) in TL with (x) if TL is full and MFT [y] < MFT [x];

3. Update MFT (x): MFT [x] := MFT [x] + 1.

6.1 Symbols

TS, lTS , a short-term tabu list and its maximum tenure;
TL, lTL, a longer-term tabu list and its maximum length;
np, the estimated number of most active nodes in the examination set;
MFT , a node move frequency table, MFT [x] is the move frequency of node x;
nbiter, the current iteration number;
nbmax, the maxmum number of null iterations;
bestiter, the number of iterations since the latest best solution was found;
optiter, the number of iterations since the latest tabu relaxation;
s, the current solution;
s∗, the minimal solution generated in some iteration from current solution s;
bestsol, the best solution so far;
NS(s), a subset of neighbourhood N(s) or N∗(s) of solution s;
f(s), the value of objective function of solution s. f(s) = p0W0 + p1W1 + p2W2,
where p0, p1, p2 are the penalties used to weight the classes of conflicts, and
W0,W1,W2 are the numbers of first-order, second-order and third-order conflicts:

96 G.M. White and B.S. Xie

i.e. simultaneous exams, consecutive exams and exams with only one free period
between them;
V ∗, a set of nodes having at least one conflict in current solution s;
V , all nodes in graph (i.e. all examinations);
Ti, timeslot i (or period i);
mi, any feasible atomic move (x, Ti, Tj) that moves a node x from Ti into Tj

(j �= i);
r, a ratio used to limit the uphill movement during TS.

7 The Complete System

We have constructed a multi-phase system to optimize the examination
timetabling procedure. This can find better solutions than a single-phase one.

Phase One:

– Analyse the examination set with the quantitative analysis methods de-
scribed earlier in Section 5 and estimate the number of the lightest exams;

– Apply the bin packing algorithm to generate the initial solution (with a given
number of timeslots);

– Evaluate this initial solution. If the initial solution is feasible (i.e. there are
no first-order conflicts), go to phase three; otherwise go to phase two.

Phase Two:

– Use the solution generated in phase one as the initial solution;
– Construct an objective function using only first-order conflicts: f(s) = W0;
– Apply OTTABU to the infeasible solution to generate a feasible solution; if

OTTABU cannot generate a feasible solution, then add one more period to
the timetable and re-run phase two;

– If a feasible solution is generated then proceed to phase three.

Phase Three:

– Use the solution generated in phase one or phase two as the initial solution.
Construct an objective function using first-order and second-order conflicts:
f(s) = p0 × W0 +W1, p0 � 1;

– Apply OTTABU to the feasible solution to optimize the solution;
– Go to phase four.

Phase Four:

– Use the solution generated in phase three as the initial solution. Construct an
objective function using first-order, second-order and third-order conflicts:
f(s) = p0 × W0 + p1 × W1 +W2, p0 � p1 � 1;

– Apply OTTABU to the feasible solution to optimize the solution.

Examination Timetables and Tabu Search with Longer-Term Memory 97

8 Results

There are 771 exams to be assigned into 36 timeslots and each timeslot has 2200
seats available. In order to avoid seating large numbers of students at the end of
the examination session (where there are no following exterior edges) the seating
for these three timeslots is reduced to 1100. Some quantitative data about the
examinations are

– The total number of periods, 36,
– The total number of examinations, 771,
– The total number of students, 14 032,
– The average number of exams per period, 21,
– The number of seats for per period, 2200,
– The total number of seats available, 75 900,
– The total number of student-exam enrolments, 46 899,
– The average number of exams per student, 3.34,
– The average number of student-exams per period, 1303,
– The ratio of seat utilization, 61.79%,
– The average number of students per exam, 60.82,
– The total number of edges in the graph, 18 522,
– The average degree per node, 48,
– The density of conflict matrix, 0.06,
– The total weights of edges in the graph, 140 704,
– The average weights of edges per exam, 182.

The number of lightest exams is estimated as np = 196 at the 5% accumula-
tion percentage (see Table 2).

In phase one, we apply a bin packing algorithm to get a feasible solution s0
such that (W0/W1/W2) = (0/8686/7844). This means that no student needs to
take two exams at the same time (first-order conflict), 8686 students have to
take two consecutive exams (second-order conflicts) and 7844 students have to
take exams having third-order conflicts.

We use the TS technique with both short-term tabu list and longer-term
tabu list to optimize this timetable. Since a feasible solution was achieved in
phase one, we go directly to phase three, apply OTTABU to optimize W0/W1
and obtain the result shown in Table 3. We set p0 = 500, p1 = 1, np = 196,
and lTS = 9. lTL was set to 190 in pass 1 and pass 3. The initial solution is
characterized by 0/8686/7844 obtained by the bin packing algorithm of phase
one (f(s) = 8686).
Then, going to phase four, we use the solution s obtained above as an initial
value. We set p0 = 250 000, p1 = 500, p2 = 1, np = 196 (at the 5% accumulation
percentage), lTS = 9, and the initial solution has 0/496/5643, obtained in phase
three (f(s) = 253 643).

The best solution is bestsol where (W0/W1/W2) = (0/494/4354) which had
an execution time of approx. 86 min on a Pentium 100 MHz PC. In this solution,
494 students (approx. 3% of the total enrolment) have to take two consecutive
exams. This is the best solution obtained by the system with these data.

98 G.M. White and B.S. Xie

Table 3. Case 1: both longer-term and short-term memory applied (phase three)

Pass Neighbourhood lTL nbmax Iterations Time bestsol f(bestsol)
1 N∗(s) 190 570 2595 0:16:00 0/776 776
2 N(s) 63 94 761 0:12:06 0/592 592
3 N∗(s) 190 570 500* 0:02:14 0/590 590
4 N(s) 63 94 1224 0:19:36 0/496 496

Total 5080 0:49:56

* Because V ∗ in pass 3 is less than lTL, both lTL and nbmax were changed automati-
cally.

Table 4. Case 2: both longer-term and short-term memory applied (phase four)

Pass Neighbourhood lTL nbmax Iterations Time bestsol f(bestsol)
1 N∗(s) 190 570 772 0:12:15 0/496/4546 252546
2 N(s) 63 94 94 0:02:18 0/496/4546 252546
3 N∗(s) 190 570 664 0:19:47 0/494/4354 251354
4 N(s) 63 94 94 0:02:17 0/494/4354 251354

Total 1624 0:36:37

9 Comparison

In order to examine the usefulness of longer-term frequency-based memory, we
have done some experiments that attempt to explore the behaviour of OTTABU
when the longer-term memory is disabled or set with different maximum lengths.

First, the longer-term tabu list in OTTABU was disabled; the penalties p0,
p1 and p2 were set to the same values as in cases 1 and 2; nbmax was fixed at
270. We set p0 = 500, p1 = 1, lTS = 7 and the initial solution is 0/8686/7844.
The results are shown in Table 5.

Table 5. Case 3: short-term memory only. I

Pass Neighbourhood nbmax Iteration Time bestsol f(bestsol)
1 N∗(s) 270 785 0:06:00 0/892 892
2 N(s) 270 494 0:07:00 0/772 772
3 N∗(s) 270 307 0:02:00 0/759 759
4 N(s) 270 286 0:04:38 0/748 748

Total 1772 0:19:38

We have repeated the search, using the same conditions of case 3 with the
sole difference that the order of applying neighbourhood definitions is reversed,
resulting in a solution initially slower but better than previously obtained. But in
the end, the solution quality is about the same, as is the time required to obtain

Examination Timetables and Tabu Search with Longer-Term Memory 99

it. We set p0 = 500, p1 = 1, lTS = 7 and the initial solution is 0/8686/7844. The
results are shown in Table 6.

Table 6. Case 4: short-term memory only. II

Pass Neighbourhood nbmax Iterations Time bestsol f(bestsol)
1 N∗(s) 270 767 0:12:16 0/801 801
2 N(s) 270 342 0:02:01 0/776 776
3 N∗(s) 270 291 0:04:44 0/760 760
4 N(s) 270 390 0:02:20 0/749 749

total 1790 0:21:21

The results show that:

1. By using N(s), we can get a much better solution than by using N∗(s) in
pass 1 even though the former took twice as much time as does the latter;

2. The four-pass algorithm can greatly improve the timetable. The best solution
obtained in pass 1 is improved in the later passes. The value of the objective
function is minimized by about 16% in case 3, and about 7% in case 4;

3. Even though we set a bigger value for nbmax, the search ended much earlier
than we expected because of cycling. In fact, we have later used a smaller
nbmax to save time without having a negative impact on the search.

Comparing cases 3 and 4 with cases 1 and 2, we notice that the use of
longer-term memory had a greater effect on the quality of the final result. The
use of longer-term memory resulted in a solution having a value of 496 whereas
without longer-term memory, the best obtainable solution had a value of 748.
The reduction of (748−496)/748 = 0.34 is due entirely to the use of longer-term
memory.

We have also set different values for the maximum length of the longer-term
tabu list, and find the right lTL not only to get the best solution and but also
to reduce search time.

It can be seen from Table 7 that reducing lTL to 30 results in solutions
that are much worse than those shown in Table 4, (solution value is 326 668 as
opposed to 251 354). We set p0 = 250 000, p1 = 500, p2 = 1, lTL = 30, lTS = 9,
and the initial solution is 0/8686/7844.
We set p0 = 500, p1 = 1 and np = 354 (at 15% accumulation percentage),
lTS = 9, and the initial solution is 0/8686/7844 obtained by a bin packing
algorithm (f(s) = 8686). The result is shown in Table 8.

Thus far we have examined the influence of the longer-term tabu list on
the Ottawa University data used. A similar study was performed on some data
available in Carter’s repository [11]. These data sets, called CAR-F-92 and UTA-
S-92 in Table 1 of [11], were used as the input data of OTTABU. In both cases,
when the longer-term list was removed from the program the results were not

100 G.M. White and B.S. Xie

Table 7. A longer-term tabu list that is too small

Pass Neighbourhood lTL nbmax Iterations Time bestsol f(bestsol)
1 N∗(s) 30 270 2513 0:39:47 0/812/4745 470745
2 N(s) 30 270 768 0:22:06 0/659/4644 334144
3 N∗(s) 30 270 579 0:08:40 0/651/4817 330317
4 N(s) 30 270 839 0:19:33 0/644/4688 326668

Total 4699 1:29:05

Table 8. A longer-term tabu list that is too large

Pass Neighbourhood lTL nbmax Iterations T ime bestsol f(bestsol)
1 N∗(s) 354 1062 2595* 0:16:32 0/776 776
2 N(s) 118 177 844 0:14:12 0/592 592
3 N∗(s) 354 1062 502* 0:02:29 0/590 590
4 N(s) 118 177 1425 0:23:49 0/509 509

Total 5080 0:55:52

* Both lTL and nbmax are changed automatically when the size of V ∗ is less than np.

as satisfactory as when it was present. For the CAR-F-92 data set, the use of
a longer-term list reduces the ultimate cost by about 15% and for the UTA-F-
92 data set, the figure is about 7%. Both these values are less than the value
calculated in the previous section for the Ottawa data.

We believe that the main reason for this is related to the matrix density.
Both the CAR and UTA data sets have a matrix density that is relatively high,
0.14 and 0.13 respectively. The density of the Ottawa data was calculated to be
0.06. Thus there are less than half as many edges per node on average for the
Ottawa data as there are for the others.

Thus, when a move is made using the Ottawa data a large reduction in the
penalty function is possible because the matrix density is smaller, increasing the
likelihood that a move of a node to the target timeslot will result in a smaller
(or zero) penalty. Study of this effect is continuing.

10 Comparison of OTTABU with Other Results

The comparison of various strategies within an environment in which everything
else is held constant is relatively easy. This is the approach followed in the preced-
ing sections in which it became evident that incorporating constraint relaxation
and a longer-term tabu list into a TS led to better-quality solutions than could
be obtained otherwise, at least in the environment used. It is something else to
decide whether these techniques will also work in other environments.

This question is complicated by the fact that many of the other algorithms
have been written to solve certain problems particular to some institution. As
Carter et al. [11] point out, “As all real timetabling problems have different

Examination Timetables and Tabu Search with Longer-Term Memory 101

side constraints with them, for all practical purposes each school has a unique
problem.”

Nonetheless, in order to see whether the improvements demonstrated by OT-
TABU in the Ottawa University environment would continue to be shown in
other environments, some changes were made to the algorithm and the data in
such a way that some comparisons could be made. These included the following
modifications:

1. Data from two other universities were downloaded from Carter’s repository
[11]. The data sets, CAR-F-92 and UTA-S-92, were used as the input data
of OTTABU.

2. The value of the objective function was changed to include farther proxim-
ities or higher-order conflicts. The cost weights were taken as w1 = 16, w2
= 8, w3 = 4, w4 = 2, w5 = 1. The possibility of simultaneous examinations
was taken as a hard constraint and was forbidden.

3. The common metric “cost”, taken to be the total penalty using the weights
listed above divided by the number of students involved, was used as the
basis of comparison.

4. OTTABU was modified to incorporate a random tenure in its short-term
tabu list so that it could be restarted with the same parameters several
times to get a number of final solutions and a selection of best solutions and
costs. This also makes the short-term tabu list part of OTTABU more like
the algorithm of Di Gaspero and Schaerf [12].

With these modifications several runs were made and the final solutions ob-
tained by OTTABU could be compared directly with the results published by
Carter et al. [11] and by Di Gaspero and Schaerf [12]. The program EXAMINE,
reported by Carter et al. [11] uses 40 different strategies overall, incorporating
five basic sorting rules, using cliques or not, using costs or not and using back-
tracking or not. The results published in their Table 5 have associated costs
ranging from 6.2 to 8.2 for the data set CAR-F-92 and ranging from 3.5 to 6.4
for data set UTA-S-92.

The program of Di Gaspero and Schaerf uses a short-term memory with
tenure varying randomly between 15 and 25. The stopping criteria is based on the
number of iterations from the last improvement (idle iterations), the number of
iterations depending of the instance, varying from 2000 to 20 000. Their average
cost for CAR-F-92 was 5.6 and for UTA-S-92 was 4.5.

In comparison, the results obtained by OTTABU as modified above were an
average of 4.7 for CAR-F-92 and 4.0 for UTA-S-92. These results are shown in
Table 9.

The average cost of the OTTABU solution is less than that reported by Di
Gaspero and Schaerf in both cases and is less than all but one of the values
reported by Carter et al. for these two data sets.

The overall conclusion resulting from this comparison is that OTTABU’s
use of longer-term tabu lists has a demonstrated beneficial effect in all the cases
tested and that OTTABU’s results compare favourably with the other algorithms
examined.

102 G.M. White and B.S. Xie

Table 9. Comparison of results

Data set Number of OTTABU Di Gaspero and Carter et al.
timeslots average Schaerf average

CAR-F-92 32 4.7 5.6 6.2–8.2
UTA-S-92 35 4.0 4.5 3.5–6.4

11 Conclusion

In the OTTABU algorithm, we use both a recency-based short-term tabu list
and a move (or transition)-frequency-based longer-term tabu list which prevent
cycling and diversify the search space effectively to help get a better solution.
We have developed a four-pass TS technique to intensively search the region
containing the best solution in order to search for a better solution. Based on
our experimental tests using real data from three institutions we conclude:

1. For a large-scale examination timetabling problem, TS techniques, based on
short-term memory only, make progress quickly from a non-optimal initial
solution but cannot generate a really high-quality solution. We have imple-
mented an algorithm in which both longer-term and short-term memory are
used to generate better solutions than a short-term memory alone. This is
observed to be true on every data set we have used.

2. It is shown in our study that the move- or transition-frequency-based long-
term memory is a technique that is easy to understand and implement. The
TL tabu list was observed to forbid the movement of potential overactive
exams, thus preventing cycling and diversifying the search space.

3. We successfully applied a quantitative analysis procedure to estimate the
number of the lightest exams (i.e. the potentially movable exams). This
makes it possible to automatically determine the appropriate size of the
longer-term tabu list.

4. The relaxation of tabu lists is an effective way of avoiding potential over-
uphill movements, reduce the search time and search space and increase the
likelihood of finding optimal solutions.

5. The four-pass algorithm OTTABU is an effective mechanism to control the
balance between diversification and intensification in the solution search.

Acknowledgements. The former registrar of the University of Ottawa, Mr
George H. von Schoenberg, was instrumental in initiating the research that led
to this study. The Manager, Registration and Records, Ms Pauline Bélanger,
helped greatly in all facets of the implementation and data collection.

References

1. Peck, J.E.L., Williams, M.R.: Algorithm 286 – Examination Scheduling. Commun.
A.C.M. 9 (1966) 433–434

Examination Timetables and Tabu Search with Longer-Term Memory 103

2. White, G.M. Chan, P.-W.: Towards the Construction of Optimal Examination
Schedules. INFOR 17 (1979) 219–229

3. Carter, M.W., Laporte, G., Chinneck, J.W.: A General Examination Scheduling
System. Interfaces 24 (1994) 109–120

4. Carter, M.W., Laporte, G.: Recent Developements in Practical Examination
Timetabling. Lecture Notes in Computer Science, Vol. 1153. Springer-Verlag,
Berlin Heidelberg New York (1996) 3–21

5. de Werra, D., Hertz, A.: Tabu Search Techniques – a Tutorial and Applications to
Neural Networks. OR Spektrum 11 (1989) 131–141

6. Hertz, A.: Tabu Search for Large Scale Timetabling Problems. Eur. J. Oper. Res.
54 (1991) 39–47

7. Boufflet, J.P., Negre, S.: Three Methods Used to Solve an Examination Timetable
Problem. Lecture Notes in Computer Science, Vol. 1153. Springer-Verlag, Berlin
Heidelberg New York (1996) 3–21

8. Ferland, J.A.: Generalized Assignment-Type Problems: a Powerful Model Scheme.
Lecture Notes in Computer Science, Vol. 1408. Springer-Verlag, Berlin Heidelberg
New York (1998) 53–77

9. Glover, F: Tabu Search: a Tutorial. Interfaces 20 (1990) 74–94
10. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
11. Carter, M.W., Laporte, G., Lee, S.Y.: Examination Timetabling: Algorithmic

Strategies and Applications. J. Oper. Res. Soc. 47 (1996) 373–383
12. Di Gaspero, L., Schaerf, A.: Proc. 3rd Int. Conf. Practice and Theory of Automated

Timetabling (Konstanz, Germany) (2000) 176–179

	Introduction
	Graph Colouring and Examination Timetabling Models
	Concepts of Tabu Search
	The OTTABU Algorithm
	Initial Solution
	Atomic Move, Neighbourhood, and Local Search
	Recency-Based Short-Term Memory
	Transitional Frequency-Based Longer-Term Memory
	Tabu Relaxation
	Intensification

	Quantitative Analysis of Examination Graph
	Method 1: Mean Points Estimation
	Method 2: Accumulation Percentages Estimation
	Estimating the Length of the Longer-Term Tabu List

	Details of the OTTABU Algorithm
	Symbols

	The Complete System
	Results
	Comparison
	Comparison of OTTABU with Other Results
	Conclusion

